Category Archives: solution

Solution: 2024-21 The Realizability of Fundamental Group Homomorphisms

Prove or disprove that every homomorphism \( \pi_1(X) \to \pi_1(X)\) can be realized as the induced homomorphism of a continuous map \(X \to X\).

The best solution was submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +4). Congratulations!

Here is the best solution of problem 2024-21.

Other solutions were submitted by 김찬우 (연세대학교 수학과 22학번, +3), 양준혁 (KAIST 수리과학과 20학번, +3).

GD Star Rating
loading...

Solution: 2024-20 Vanishing at infinity

Suppose that \( f: \mathbb{R} \to \mathbb{R} \) is a continuous function such that the sequence \( f(x), f(2x), f(3x), \dots \) converges to \( 0 \) for any \( x > 0 \). Prove or disprove that \[ \lim_{x \to \infty} f(x) = 0. \]

The best solution was submitted by 이명규 (KAIST 전산학부 20학번, +4). Congratulations!

Here is the best solution of problem 2024-20.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +3), 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 최정담 (KAIST 디지털인문사회과학부 석사과정, +3). There was an incorrect soultion submitted.

GD Star Rating
loading...

Solution: 2024-19 Stationary function

Let \(g(t): [0,+\infty) \to [0,+\infty)\) be a decreasing continuous function. Assume \(g(0)=1\), and for every \(s, t \geq 0 \) \[t^{11}g(s+t) \leq 2024 \; [g(s)]^2.\] Show that \(g(11) = g(12)\).

The best solution was submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +4). Congratulations!

Here is the best solution of problem 2024-19.

Other solutions were submitted by 김찬우 (연세대학교 수학과 22학번, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 이명규 (KAIST 전산학부 20학번, +3).

GD Star Rating
loading...

Solution: 2024-18 The Nonnegative Triple Sequence Challenge

Let \( f(n) \) denote the number of possible sequences of length \( n \), where each term is either \(0, 1,\) or \(-1\), such that the product of every three consecutive numbers is nonnegative. Compute \( f(33)\).

The best solution was submitted by 신민규 (KAIST 새내기과정학부 24학번, +4). Congratulations!

Here is the best solution of problem 2024-18.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +3), 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 우준서 (KAIST 수리과학과 20학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 채지석 (KAIST 수리과학과 석박통합과정, +3), 최정담 (KAIST 디지털인문사회과학부 석사과정, +3), Daulet Kurmantayev (+3).

GD Star Rating
loading...

Solution: 2024-17 Positive polynomials

Suppose that \( p(x) \) is a degree \( n \) polynomial with complex coefficients such that \( p(x) \geq 0 \) for any real number \( x \). Prove that
\[
p(x) + p'(x) + \dots + p^{(n)}(x) \geq 0
\]
for any real number \( x \).

The best solution was submitted by 이명규 (KAIST 전산학부 20학번, +4). Congratulations!

Here is the best solution of problem 2024-17.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +3), 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 서성욱 (대전 동산고 3학년, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 최정담 (KAIST 디지털인문사회과학부 석사과정, +3), 최현준 (KAIST 수리과학과 18학번, +3).

GD Star Rating
loading...

Solution: 2024-16 Stay positive!

Let \(A= [a_{ij}]_{1\leq i,j\leq 5}\) be a \(5\times 5\) positive definite (real) matrix. Show that the matrix \([a_{ij}/(i+j)]\) is also positive definite.

The best solution was submitted by 김찬우 (연세대학교 수학과 22학번, +4). Congratulations!

Here is the best solution of problem 2024-16.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 서성욱 (대전 동산고 3학년, +3), 신민규 (KAIST 새내기과정학부 24학번, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 최정담 (KAIST 디지털인문사회과학부 석사과정, +3).

GD Star Rating
loading...

Solution: 2024-15 The Narrow Gap Sequence Conundrum

Is it possible to arrange the numbers \(1, 2, 3, \ldots, 2024\) in a sequence such that the difference between any two adjacent numbers is greater than \(1\) but less than \(4\)?

The best solution was submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +4). Congratulations!

Here is the best solution of problem 2024-15.

Other solutions were submitted by 권오관 (연세대학교 수학과 22학번, +3), 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 서성욱 (대전 동산고 3학년, +3), 신민규 (KAIST 새내기과정학부 24학번, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +3), 채지석 (KAIST 수리과학과 석박통합과정, +3), 최백규 (KAIST 생명과학과 박사과정, +3), 최정담 (KAIST 디지털인문사회과학부 석사과정, +3), Anar Rzayev (KAIST 전산학부 19학번, +3), ASKM Sayeef Uddin (KAIST 수리과학과 22학번, +3).

GD Star Rating
loading...

Solution: 2024-14 Infinite series of reciprocals

Evaluate the following sum (with proof):
\[
\sum_{k=0}^{\infty} \frac{1}{(6k+1)(6k+2)(6k+3)(6k+4)(6k+5)(6k+6)}
\]

The best solution was submitted by 채지석 (KAIST 수리과학과 석박통합과정, +4). Congratulations!

Here is the best solution of problem 2024-14.

Other solutions were submitted by 권오관 (연세대학교 수학과 22학번, +3), 김준홍 (KAIST 수리과학과 석박통합과정, +3), 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +3).

GD Star Rating
loading...

Solution: 2024-13 Concave functions (revisited)

Let \(u_n(t)\), \(n=1,2…\) be a sequence of concave functions on \(\mathbb{R}\). Let \(g(t)\) be a differentiable function on \(\mathbb{R}\). Assume \(\liminf_{n\to\infty} u_n(t) \geq g(t)\) for every \(t\) and \(\lim_{n\to \infty} u_n(0) = g(0)\). Suppose \(u_n'(0)\) exist for \(n=1,2,…\). Compare \(\lim_{n\to \infty} u_n'(0)\) and \(g'(0)\).

The best solution was submitted by 김찬우 (연세대학교 수학과 22학번, +4). Congratulations!

Here is the best solution of problem 2024-13.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +2).

GD Star Rating
loading...

Solution: 2024-12 The Triple Match Matrix Challenge

Count the number of distinct matrices \( A \), where two matrices are considered identical if one can be obtained from the other by rearranging rows and columns, that have the following properties:

  1. \( A \) is a \( 7 \times 7 \) matrix and every entry of \( A \) is \( 0 \) or \( 1 \).
  2. Each row of \( A\) contains exactly 3 non-zero entries.
  3. For any two distinct rows \( i\) and \( j\) of \( A\), there exists exactly one column \( k \) such that \( A_{ik} \neq 0 \) and \( A_{jk} \neq 0 \).

The best solution was submitted by 권오관 (연세대학교 수학과 22학번, +4). Congratulations!

Here is the best solution of problem 2024-12.

Other solutions were submitted by 김준홍 (KAIST 수리과학과 석박통합과정, +3), 김찬우 (연세대학교 수학과 22학번, +3), 노희윤 (KAIST 수리과학과 석박통합과정, +3), 양준혁 (KAIST 수리과학과 20학번, +3), 이명규 (KAIST 전산학부 20학번, +3), 정영훈 (KAIST 새내기과정학부 24학번, +3), 채지석 (KAIST 수리과학과 석박통합과정, +3), Eun Kyeol (+3).

GD Star Rating
loading...