Determine whether or not the following infinite series converges. \[ \sum_{n=0}^{\infty} \frac{ 1 }{2^{2n}} \binom{2n}{n}.\]

**GD Star Rating**

*loading...*

Determine whether or not the following infinite series converges. \[ \sum_{n=0}^{\infty} \frac{ 1 }{2^{2n}} \binom{2n}{n}.\]

For an integer \( p \), define

\[

f_p(n) = \sum_{k=1}^n k^p.

\]

Prove that

\[

\frac{1}{2} \sum_{n=1}^{\infty} \frac{f_{-1}(n)}{f_3(n)} + 2\sum_{n=1}^{\infty} \frac{f_{-1}(n)}{f_1(n)} = \sum_{n=1}^{\infty} \frac{(f_{-1}(n))^2}{f_1(n)}.

\]

Let \(k\) be a positive integer. Let \(a_n=1\) if \(n\) is not a multiple of \(k+1\), and \(a_n=-k\) if \(n\) is a multiple of \(k+1\). Compute \[\sum_{n=1}^\infty \frac{a_n}{n}.\]

Let \(a_1,a_2,\ldots\) be an infinite sequence of positive real numbers such that \(\sum_{n=1}^\infty a_n\) converges. Prove that for every positive constant \(c\), there exists an infinite sequence \(i_1<i_2<i_3<\cdots\) of positive integers such that \(| i_n-cn^3| =O(n^2)\) and \(\sum_{n=1}^\infty \left( a_{i_n} (a_1^{1/3}+a_2^{1/3}+\cdots+a_{i_n}^{1/3})\right)\) converges.

Determine all positive integers \(\ell\) such that \[ \sum_{n=1}^\infty \frac{n^3}{(n+1)(n+2)(n+3)\cdots (n+\ell)}\] converges and if it converges, then compute its value.

Let \(m\) and \(n\) be odd integers. Determine \[ \sum_{k=1}^\infty \frac{1}{k^2}\tan\frac{k\pi}{m}\tan \frac{k\pi}{n}.\]

Compute tan^{-1}(1) -tan^{-1}(1/3) + tan^{-1}(1/5) – tan^{-1}(1/7) + … .

Evaluate the sum \[ \sum_{n=1}^{\infty} \frac{n \sin n}{1+n^2}. \]

(UPDATED: 2011.2.18) I have fixed a typo in the formula. Initially the following formula \[ \sum_{n=1}^{\infty} \frac{\sin n}{1+n^2}\] was posted but it does not seem to have a closed form answer. I’m sincerely sorry!

Evaluate the following sum

\(\displaystyle\sum_{m=1}^\infty \sum_{\substack{n\ge 1\\ (m,n)=1}} \frac{x^{m-1}y^{n-1}}{1-x^m y^n}\)

when |x|, |y|<1.

(We write (m,n) to denote the g.c.d of m and n.)

What is the value of the following infinite series?

\(\displaystyle\sum_{n=2}^\infty \sum_{m=1}^{n-1} \frac{(-1)^n}{mn}\)