Evaluate the following:
\[
\frac{1}{1^2 \cdot 3^3 \cdot 5^2} – \frac{1}{3^2 \cdot 5^3 \cdot 7^2} + \frac{1}{5^2 \cdot 7^3 \cdot 9^2} – \dots
\]
loading...
Evaluate the following:
\[
\frac{1}{1^2 \cdot 3^3 \cdot 5^2} – \frac{1}{3^2 \cdot 5^3 \cdot 7^2} + \frac{1}{5^2 \cdot 7^3 \cdot 9^2} – \dots
\]
Determine whether or not the following infinite series converges. \[ \sum_{n=0}^{\infty} \frac{ 1 }{2^{2n}} \binom{2n}{n}.\]
For an integer \( p \), define
\[
f_p(n) = \sum_{k=1}^n k^p.
\]
Prove that
\[
\frac{1}{2} \sum_{n=1}^{\infty} \frac{f_{-1}(n)}{f_3(n)} + 2\sum_{n=1}^{\infty} \frac{f_{-1}(n)}{f_1(n)} = \sum_{n=1}^{\infty} \frac{(f_{-1}(n))^2}{f_1(n)}.
\]
Let \(k\) be a positive integer. Let \(a_n=1\) if \(n\) is not a multiple of \(k+1\), and \(a_n=-k\) if \(n\) is a multiple of \(k+1\). Compute \[\sum_{n=1}^\infty \frac{a_n}{n}.\]
Let \(a_1,a_2,\ldots\) be an infinite sequence of positive real numbers such that \(\sum_{n=1}^\infty a_n\) converges. Prove that for every positive constant \(c\), there exists an infinite sequence \(i_1<i_2<i_3<\cdots\) of positive integers such that \(| i_n-cn^3| =O(n^2)\) and \(\sum_{n=1}^\infty \left( a_{i_n} (a_1^{1/3}+a_2^{1/3}+\cdots+a_{i_n}^{1/3})\right)\) converges.
Determine all positive integers \(\ell\) such that \[ \sum_{n=1}^\infty \frac{n^3}{(n+1)(n+2)(n+3)\cdots (n+\ell)}\] converges and if it converges, then compute its value.
Let \(m\) and \(n\) be odd integers. Determine \[ \sum_{k=1}^\infty \frac{1}{k^2}\tan\frac{k\pi}{m}\tan \frac{k\pi}{n}.\]
Compute tan-1(1) -tan-1(1/3) + tan-1(1/5) – tan-1(1/7) + … .
Evaluate the sum \[ \sum_{n=1}^{\infty} \frac{n \sin n}{1+n^2}. \]
(UPDATED: 2011.2.18) I have fixed a typo in the formula. Initially the following formula \[ \sum_{n=1}^{\infty} \frac{\sin n}{1+n^2}\] was posted but it does not seem to have a closed form answer. I’m sincerely sorry!
Evaluate the following sum
\(\displaystyle\sum_{m=1}^\infty \sum_{\substack{n\ge 1\\ (m,n)=1}} \frac{x^{m-1}y^{n-1}}{1-x^m y^n}\)
when |x|, |y|<1.
(We write (m,n) to denote the g.c.d of m and n.)