Prove that for each positive integer \(n\), there exist \(n\) real numbers \(x_1,x_2,\ldots,x_n\) such that \[\sum_{j=1}^n \frac{x_j}{1-4(i-j)^2}=1 \text{ for all }i=1,2,\ldots,n\] and \[\sum_{j=1}^n x_j=\binom{n+1}{2}.\]

**GD Star Rating**

*loading...*

Prove that for each positive integer \(n\), there exist \(n\) real numbers \(x_1,x_2,\ldots,x_n\) such that \[\sum_{j=1}^n \frac{x_j}{1-4(i-j)^2}=1 \text{ for all }i=1,2,\ldots,n\] and \[\sum_{j=1}^n x_j=\binom{n+1}{2}.\]

Let p be a prime number and let n be a positive integer. Let \(A=\left( \binom{i+j-2}{i-1}\right)_{1\le i\le p^n, 1\le j\le p^n} \) be a \(p^n \times p^n\) matrix. Prove that \( A^3 \equiv I \pmod p\), where I is the \(p^n \times p^n\) identity matrix.

Evaluate the sum \[ \sum_{k=0}^{[n/2]} (-4)^{n-k} \binom{n-k}{k} ,\] where [x] denotes the greatest integer less than or equal to x.

Let n be a positive integer. Prove that

\(\displaystyle \sum_{k=0}^n (-1)^k \binom{2n+2k}{n+k} \binom{n+k}{2k}=(-4)^n\).

Prove that \(\displaystyle \sum_{m=0}^n \sum_{i=0}^m \binom{n}{m} \binom{m}{i}^3=\sum_{m=0}^n \binom{2m}{m} \binom{n}{m}^2\).