Consider a function \(f: \{1,2,\dots, n\}\rightarrow \mathbb{R}\) satisfying the following for all \(1\leq a,b,c \leq n-2\) with \(a+b+c\leq n\).

\[ f(a+b)+f(a+c)+f(b+c) – f(a)-f(b)-f(c)-f(a+b+c) \geq 0 \text{ and } f(1)=f(n)=0.\]

Prove or disprove this: all such functions \(f\) always have only nonnegative values on its domain.

Acknowledgement: This problem arises during a research discussion between June Huh, Jaehoon Kim and Matt Larson.

The best solution was submitted by 신민서 (KAIST 수리과학과 20학번, +4). Congratulations!

Here is the best solution of problem 2023-23.

Other solutions were submitted by 김기수 (KAIST 수리과학과 18학번, +3), 김찬우 (연세대학교 수학과 22학번, +3), 박기윤 (KAIST 새내기과정학부 23학번, +3), 지은성 (KAIST 수리과학과 20학번, +3), 이도현 (KAIST 수리과학과 석박통합과정 23학번, +3), 전해구 (KAIST 기계공학과 졸업생, +3).

**GD Star Rating**

*loading...*