# Solution: 2018-19 Gauss’s theorem

Let
$f(x) = 1 + \left( \frac{1}{2} \cdot x \right)^2 + \left( \frac{1}{2} \cdot \frac{3}{4} \cdot x^2 \right)^2 + \left( \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot x^3 \right)^2 + \dots$
Prove that
$(\sin x) f(\sin x) f'(\cos x) + (\cos x) f(\cos x) f'(\sin x) = \frac{2}{\pi \sin x \cos x}.$

The best solution was submitted by Seo, Juneyoung (서준영, 수리과학과 대학원생). Congratulations!

Here is his solution of problem 2018-19.

Alternative solutions were submitted by 길현준 (2018학번, +3, solution), 김기현 (수리과학과 대학원생, +3), 이본우 (수리과학과 2017학번, +3).

GD Star Rating

# 2018-19 Gauss’s theorem

Let
$f(x) = 1 + \left( \frac{1}{2} \cdot x \right)^2 + \left( \frac{1}{2} \cdot \frac{3}{4} \cdot x^2 \right)^2 + \left( \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot x^3 \right)^2 + \dots$
Prove that
$(\sin x) f(\sin x) f'(\cos x) + (\cos x) f(\cos x) f'(\sin x) = \frac{2}{\pi \sin x \cos x}.$

GD Star Rating

# Midterm break

The problem of the week will take a break during the midterm exam period and return on October 26, Friday. Good luck on your midterm exams!

GD Star Rating

# Solution: 2018-18 A random walk on the clock

Suppose that we are given 12 points evenly spaced on a circle. Starting from a point in the 12 o’clock position, a particle P will move to one of the adjacent positions with equal probably, 1/2. P stops if it visits all 12 points. What is the most likely point that P stops for the last?

The best solution was submitted by Ha, Seokmin (하석민, 수리과학과 2017학번). Congratulations!

Here is his solution of problem 2018-18.

An alternative solution was submitted by 채지석 (수리과학과 2016학번, +3).

GD Star Rating

# 2018-18 A random walk on the clock

Suppose that we are given 12 points evenly spaced on a circle. Starting from a point in the 12 o’clock position, a particle P will move to one of the adjacent positions with equal probably, 1/2. P stops if it visits all 12 points. What is the most likely point that P stops for the last?

GD Star Rating

# Solution: 2018-17 Mathematica does not know the answer

For $$a > b > 0$$, find the value of
$\int_0^{\infty} \frac{e^{ax} – e^{bx}}{x(e^{ax}+1)(e^{bx}+1)} dx.$

The best solution was submitted by Ha, Seokmin (하석민, 수리과학과 2017학번). Congratulations!

Here is his solution of problem 2018-17.

Alternative solutions were submitted by 길현준 (2018학번, +3), 김태균 (수리과학과 2016학번, +3, solution), 이본우 (수리과학과 2017학번, +3), 채지석 (수리과학과 2016학번, +3), 서준영 (수리과학과 대학원생, +3), 이재우 (함양고등학교 3학년, +3).

GD Star Rating