Find the following limit:

\[

\lim_{n \to \infty} \left( \frac{\sum_{k=1}^{n+2} k^k}{\sum_{k=1}^{n+1} k^k} – \frac{\sum_{k=1}^{n+1} k^k}{\sum_{k=1}^{n} k^k} \right)

\]

**GD Star Rating**

*loading...*

Leave a reply

Find the following limit:

\[

\lim_{n \to \infty} \left( \frac{\sum_{k=1}^{n+2} k^k}{\sum_{k=1}^{n+1} k^k} – \frac{\sum_{k=1}^{n+1} k^k}{\sum_{k=1}^{n} k^k} \right)

\]

For \( a \geq 0 \), find

\[

\lim_{n \to \infty} n \int_{-1}^0 \left( x + \frac{x^2}{2} + e^{ax} \right)^n dx.

\]

Does \(\frac{1}{n \sin n}\) converge as \(n\) goes to infinity?

For a nonnegative real number \(x\), let \[ f_n(x)=\frac{\prod_{k=1}^{n-1} ((x+k)(x+k+1))}{ (n!)^2}\] for a positive integer \(n\). Determine \(\lim_{n\to\infty}f_n(x)\).

For real numbers \( a, b \), find the following limit.

\[

\lim_{n \to \infty} n \left( 1 – \frac{a}{n} – \frac{b \log (n+1)}{n} \right)^n.

\]

Let \(a_0=3\) and \(a_{n}=a_{n-1}+\sqrt{a_{n-1}^2+3}\) for all \(n\ge 1\). Determine \[\lim_{n\to\infty}\frac{a_n}{2^n}.\]

For given positive real numbers \(a_1,\ldots,a_k\) and for each integer n≥k, let \(a_{n+1}\) be the geometric mean of \( a_n, a_{n-1}, a_{n-2}, \ldots, a_{n-k+1}\). Prove that \( \lim_{n\to\infty} a_n\) exists and compute this limit.

Let \(f:\mathbb{R}^n\to \mathbb{R}^{n-1}\) be a function such that for each point a in \(\mathbb{R}^n\), the limit $$\lim_{x\to a} \frac{|f(x)-f(a)|}{|x-a|}$$ exists. Prove that f is a constant function.

Let *f* be a continuous function on [0,1]. Prove that \[ \lim_{n\to \infty}\int_0^1 \cdots \int_0^1 f(\sqrt[n]{x_1 x_2 \cdots x_n } ) dx_1 dx_2 \cdots dx_n = f(1/e).\]

Let \(a_1=0\), \(a_{2n+1}=a_{2n}=n-a_n\). Prove that there exists k such that \(\lvert a_k- \frac{k}{3}\rvert >2010\) and yet \(\lim_{n\to \infty} \frac{a_n}{n}=\frac13\).