Suppose that \( T \) is an \( N \times N \) matrix

\[

T = \begin{pmatrix}

a_1 & b_1 & 0 & \cdots & 0 \\

b_1 & a_2 & b_2 & \ddots & \vdots \\

0 & b_2 & a_3 & \ddots & 0 \\

\vdots & \ddots & \ddots & \ddots & b_{N-1} \\

0 & \cdots & 0 & b_{N-1} & a_N

\end{pmatrix}

\]

with \( b_i > 0 \) for \( i =1, 2, \dots, N-1 \). Prove that \( T \) has \( N \) distinct eigenvalues.

**GD Star Rating**

*loading...*