## POW 2024-09

연세대학교 수학과 권오관
(Problem) Find all positive numbers $a_{1}, a_{2}, \cdots, a_{5}$ such that $a_{1}^{\frac{1}{n}}+a_{2}^{\frac{1}{n}}+\cdots+a_{5}^{\frac{1}{n}}$ is integer for every integer $n \geq 1$.

## (Solution)

Let $a_{1}, a_{2}, \cdots, a_{5}$ be positive numbers such that $a_{1}^{\frac{1}{n}}+a_{2}^{\frac{1}{n}}+\cdots+a_{5}^{\frac{1}{n}}$ is integer for every $n \in N$.
Then, for each $i \in\{1,2,3,4,5\}$, there exists a natural number $N_{i}$ such that $\frac{4}{5}<a_{i}^{\frac{1}{n}}<\frac{6}{5}$ for all $n \geq N_{i} . \quad\left(\because \lim _{n \rightarrow \infty} a_{i}^{\frac{1}{n}}=1.\right)$

Define $M:=\max \left\{N_{1}, N_{2}, \cdots, N_{5}\right\}$.
If $n \geq M$, then $4<a_{1}^{\frac{1}{n}}+a_{2}^{\frac{1}{n}}+\cdots+a_{5}^{\frac{1}{n}}<6$ implying that $a_{1}^{\frac{1}{n}}+a_{2}^{\frac{1}{n}}+\cdots+a_{5}^{\frac{1}{n}}=5$.
Therefore, $a_{1}^{\frac{1}{M}}+a_{2}^{\frac{1}{M}}+\cdots+a_{5}^{\frac{1}{M}}=a_{1}^{\frac{1}{2 M}}+a_{2}^{\frac{1}{2 M}}+\cdots+a_{5}^{\frac{1}{2 M}}=5$.

$$
\begin{equation*}
\left(a_{1}^{\frac{1}{M}}+a_{2}^{\frac{1}{M}}+\cdots+a_{5}^{\frac{1}{M}}\right)\left(1^{2}+1^{2}+1^{2}+1^{2}+1^{2}\right) \geq\left(a_{1}^{\frac{1}{2 M}}+a_{2}^{\frac{1}{2 M}}+\cdots+a_{5}^{\frac{1}{2 M}}\right)^{2} \tag{*}
\end{equation*}
$$

Note that, by Cauch-Schwarz inequality, (*) holds and equality holds iff $a_{1}^{\frac{1}{2 M}}=a_{2}^{\frac{1}{2 M}}=\cdots=a_{5}^{\frac{1}{2 M}}$.
Since, $\left(a_{1}^{\frac{1}{M}}+a_{2}^{\frac{1}{M}}+\cdots+a_{5}^{\frac{1}{M}}\right)\left(1^{2}+1^{2}+1^{2}+1^{2}+1^{2}\right)=\left(a_{1}^{\frac{1}{2 M}}+a_{2}^{\frac{1}{2 M}}+\cdots+a_{5}^{\frac{1}{2 M}}\right)^{2}=25$,
$a_{1}^{\frac{1}{2 M}}=a_{2}^{\frac{1}{2 M}}=\cdots=a_{5}^{\frac{1}{2 M}}$ and $a_{1}=a_{2}=\cdots=a_{5}=1$.
$\therefore$ The only positive integers $a_{1} \sim a_{5}$ such that $a_{1}^{\frac{1}{n}}+a_{2}^{\frac{1}{n}}+\cdots+a_{5}^{\frac{1}{n}}$ is integer for every $n \in N$ are $a_{1}=a_{2}=\cdots=a_{5}=1$.

