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We assume that k ≤ m, otherwise the sequence is not well defined. By ignoring the first m−k
terms, without loss of generality we may assume that k = m. Let f (x1, . . . , xm) = xr

1 + xr
2 +·· ·+ xr

m

so that
an = f (an−1, . . . , an−m), n > m.

Define α= m
1

1−r , and g (x) := f (x, x, . . . , x) = mxr . Then it is clear that

g (x) > x if x <α,
g (α) =α,
g (x) < x if x >α.

(*)

The function g also has the following property.

Proposition 1. Let g k (x) = g ◦ · · · ◦ g︸ ︷︷ ︸
k times

(x). Then for any k = 0,1, . . . , it holds that g k (x) = m
∑k−1

i=0 r i
xr k . In

particular, limk→∞ g k (x) =α.

Proof. For the first part of the statement, we use induction on k. For the case k = 0 there is
nothing to show. Now suppose that g k (x) = m

∑k−1
i=0 r i

xr k holds for some k, then

g k+1(x) = g
(
g k (x)

)
= m

(
m

∑k−1
i=0 r i

xr k
)r = m

∑k
i=0 r i

xr k+1
,

so we are done.
For the second part of the statement, notice that because 0 < r < 1 we have r k → 0 and∑∞

i=0 r i = 1
1−r . The conclusion is then immediate.

In order to find the answer to the given problem, let us first examine the special case where
all initial values a1, . . . , am are equal.

Lemma 2. Suppose that a1 = a2 = ·· · = am = γ for some γ> 0. Then limn→∞ an =α.

Proof. Suppose that γ=α, then by (*) the sequence becomes a constance sequence an =α.
Suppose that γ > α. Note that, by definition, f is increasing on each argument, and also

invariant under the permutation of the arguments.

Claim 1 {an}n≥1 is a decreasing sequence.
We use strong induction on n. By assumption we have a1 = ·· · = am , and

am+1 = f (am , . . . , a1) = f (γ, . . . ,γ) = g (γ) < γ= am

where the inequality follows from (*). Now for some n > m, suppose that a1 ≥ a2 ≥ ·· · ≥ an . Then

an+1 = f (an , an−1, . . . , an−m+1)

≤ f (an−m , an−1, . . . , an−m+1)

= f (an−1, . . . , an−m+1, an−m) = an

where the second line follows from that an−m ≥ an , and the third line follows from the invariance
of f under the permutation of its arguments. This completes the induction step.
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Claim 2 {an}n≥1 is bounded below by α.
We use strong induction on n. By assumption we have a1 = ·· · = am = γ>α. Now for some

n ≥ m, suppose that ak >α for all k ≤ n. Then

an+1 = f (an , an−1, . . . , an−m+1)

≤ f (an , an , . . . , an) = g (an) < an

where from the first line to the second line we used the fact that {an}n≥1 is a decreasing sequence,
and in the last inequality we used (*). This completes the induction step.

From Claims 1 and 2, we know that {an}n≥1 is a convergent sequence. Now, notice that for
any k ≥ 1, we have

akm+1 = f (akm , akm−1, . . . , akm−m+1)

≤ f (akm−m+1, akm−m+1, . . . , akm−m+1)

= g (a(k−1)m+1)

and hence akm+1 ≤ g k (a1). By Proposition 1, we have g k (a1) →α as k →∞, so by the sandwich
theorem, limk→∞ akm+1 =α. It follows that limn→∞ an =α.

Finally, suppose that γ<α. Then in fact, we can show that {an}n≥1 is an increasing sequence
bounded above by α, by using the exact same logic used in Claims 1 and 2 but only all the
inequalities reversed. Hence, the sequence {an}n≥1 is convergent, and moreover, for any k ≥ 1 we
have

akm+1 = f (akm , akm−1, . . . , akm−m+1)

≥ f (akm−m+1, akm−m+1, . . . , akm−m+1)

= g (a(k−1)m+1)

where the second line follows from that {an}n≥1 is increasing. Consequently, akm+1 ≥ g k (a1).
Then again, by Proposition 1, limk→∞ g k (a1) =α, so by the sandwich theorem, limk→∞ akm+1 =α.
It follows that limn→∞ an =α in this case also, so we are done.

Now we can answer to the given problem. Define µ := min{a1, . . . , am}, M := max{a1, . . . , am},
and let us consider two auxiliary sequences {zn}n≥1 and {bn}n≥1 defined as

zn =
{
µ if n ≤ m,
f (zn−1, . . . , zn−m) if n > m,

and bn =
{

M if n ≤ m,
f (bn−1, . . . ,bn−m) if n > m.

Let us use strong induction on n to show that zn ≤ an ≤ bn . By definition, for all k = 1, . . . ,m
we have zk = µ≤ ak ≤ M = bk . Now suppose that, for some n ≥ m, it holds that zk ≤ ak ≤ bk for
all k = 1, . . . ,n. Then we get

zn+1 = zr
n + zr

n−1 +·· ·+ zr
n−m+1

≤ ar
n +ar

n−1 +·· ·+ar
n−m+1 = an+1

≤ br
n +br

n−1 +·· ·+br
n−m+1 = bn+1,

so we are done.
Meanwhile, by Lemma 2, we have both limn→∞ zn =α and limn→∞ bn =α. Therefore, by the

sandwich theorem, we conclude that limn→∞ an =α.
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