POW 2024-07

2021___ Jiseok Chae
May 17, 2024

We assume that $k \leq m$, otherwise the sequence is not well defined. By ignoring the first $m-k$ terms, without loss of generality we may assume that $k=m$. Let $f\left(x_{1}, \ldots, x_{m}\right)=x_{1}^{r}+x_{2}^{r}+\cdots+x_{m}^{r}$ so that

$$
a_{n}=f\left(a_{n-1}, \ldots, a_{n-m}\right), \quad n>m .
$$

Define $\alpha=m^{\frac{1}{1-r}}$, and $g(x):=f(x, x, \ldots, x)=m x^{r}$. Then it is clear that

$$
\begin{array}{ll}
g(x)>x & \text { if } x<\alpha, \\
g(\alpha)=\alpha, & \tag{*}\\
g(x)<x & \text { if } x>\alpha .
\end{array}
$$

The function g also has the following property.
Proposition 1. Let $g^{k}(x)=\underbrace{g \circ \cdots \circ g}_{k \text { times }}(x)$. Then for any $k=0,1, \ldots$, it holds that $g^{k}(x)=m^{\sum_{i=0}^{k-1} r^{i}} x^{r^{k}}$. In particular, $\lim _{k \rightarrow \infty} g^{k}(x)=\alpha$.

Proof. For the first part of the statement, we use induction on k. For the case $k=0$ there is nothing to show. Now suppose that $g^{k}(x)=m^{\sum_{i=0}^{k-1} r^{i}} x^{r^{k}}$ holds for some k, then

$$
g^{k+1}(x)=g\left(g^{k}(x)\right)=m\left(m^{\sum_{i=0}^{k-1} r^{i}} x^{r^{k}}\right)^{r}=m^{\sum_{i=0}^{k} r^{i}} x^{r^{k+1}},
$$

so we are done.
For the second part of the statement, notice that because $0<r<1$ we have $r^{k} \rightarrow 0$ and $\sum_{i=0}^{\infty} r^{i}=\frac{1}{1-r}$. The conclusion is then immediate.

In order to find the answer to the given problem, let us first examine the special case where all initial values a_{1}, \ldots, a_{m} are equal.

Lemma 2. Suppose that $a_{1}=a_{2}=\cdots=a_{m}=\gamma$ for some $\gamma>0$. Then $\lim _{n \rightarrow \infty} a_{n}=\alpha$.
Proof. Suppose that $\gamma=\alpha$, then by $\|^{*}$ the sequence becomes a constance sequence $a_{n}=\alpha$.
Suppose that $\gamma>\alpha$. Note that, by definition, f is increasing on each argument, and also invariant under the permutation of the arguments.
Claim $1 \quad\left\{a_{n}\right\}_{n \geq 1}$ is a decreasing sequence.
We use strong induction on n. By assumption we have $a_{1}=\cdots=a_{m}$, and

$$
a_{m+1}=f\left(a_{m}, \ldots, a_{1}\right)=f(\gamma, \ldots, \gamma)=g(\gamma)<\gamma=a_{m}
$$

where the inequality follows from ${ }^{*}$. Now for some $n>m$, suppose that $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$. Then

$$
\begin{aligned}
a_{n+1} & =f\left(a_{n}, a_{n-1}, \ldots, a_{n-m+1}\right) \\
& \leq f\left(a_{n-m}, a_{n-1}, \ldots, a_{n-m+1}\right) \\
& =f\left(a_{n-1}, \ldots, a_{n-m+1}, a_{n-m}\right)=a_{n}
\end{aligned}
$$

where the second line follows from that $a_{n-m} \geq a_{n}$, and the third line follows from the invariance of f under the permutation of its arguments. This completes the induction step.

Claim $2\left\{a_{n}\right\}_{n \geq 1}$ is bounded below by α.
We use strong induction on n. By assumption we have $a_{1}=\cdots=a_{m}=\gamma>\alpha$. Now for some $n \geq m$, suppose that $a_{k}>\alpha$ for all $k \leq n$. Then

$$
\begin{aligned}
a_{n+1} & =f\left(a_{n}, a_{n-1}, \ldots, a_{n-m+1}\right) \\
& \leq f\left(a_{n}, a_{n}, \ldots, a_{n}\right)=g\left(a_{n}\right)<a_{n}
\end{aligned}
$$

where from the first line to the second line we used the fact that $\left\{a_{n}\right\}_{n \geq 1}$ is a decreasing sequence, and in the last inequality we used $\left.{ }^{*}\right]$. This completes the induction step.

From Claims 1 and 2, we know that $\left\{a_{n}\right\}_{n \geq 1}$ is a convergent sequence. Now, notice that for any $k \geq 1$, we have

$$
\begin{aligned}
a_{k m+1} & =f\left(a_{k m}, a_{k m-1}, \ldots, a_{k m-m+1}\right) \\
& \leq f\left(a_{k m-m+1}, a_{k m-m+1}, \ldots, a_{k m-m+1}\right) \\
& =g\left(a_{(k-1) m+1}\right)
\end{aligned}
$$

and hence $a_{k m+1} \leq g^{k}\left(a_{1}\right)$. By Proposition 1 , we have $g^{k}\left(a_{1}\right) \rightarrow \alpha$ as $k \rightarrow \infty$, so by the sandwich theorem, $\lim _{k \rightarrow \infty} a_{k m+1}=\alpha$. It follows that $\lim _{n \rightarrow \infty} a_{n}=\alpha$.

Finally, suppose that $\gamma<\alpha$. Then in fact, we can show that $\left\{a_{n}\right\}_{n \geq 1}$ is an increasing sequence bounded above by α, by using the exact same logic used in Claims 1 and 2 but only all the inequalities reversed. Hence, the sequence $\left\{a_{n}\right\}_{n \geq 1}$ is convergent, and moreover, for any $k \geq 1$ we have

$$
\begin{aligned}
a_{k m+1} & =f\left(a_{k m}, a_{k m-1}, \ldots, a_{k m-m+1}\right) \\
& \geq f\left(a_{k m-m+1}, a_{k m-m+1}, \ldots, a_{k m-m+1}\right) \\
& =g\left(a_{(k-1) m+1}\right)
\end{aligned}
$$

where the second line follows from that $\left\{a_{n}\right\}_{n \geq 1}$ is increasing. Consequently, $a_{k m+1} \geq g^{k}\left(a_{1}\right)$. Then again, by Proposition $1, \lim _{k \rightarrow \infty} g^{k}\left(a_{1}\right)=\alpha$, so by the sandwich theorem, $\lim _{k \rightarrow \infty} a_{k m+1}=\alpha$. It follows that $\lim _{n \rightarrow \infty} a_{n}=\alpha$ in this case also, so we are done.

Now we can answer to the given problem. Define $\mu:=\min \left\{a_{1}, \ldots, a_{m}\right\}, M:=\max \left\{a_{1}, \ldots, a_{m}\right\}$, and let us consider two auxiliary sequences $\left\{z_{n}\right\}_{n \geq 1}$ and $\left\{b_{n}\right\}_{n \geq 1}$ defined as

$$
z_{n}=\left\{\begin{array}{ll}
\mu & \text { if } n \leq m, \\
f\left(z_{n-1}, \ldots, z_{n-m}\right) & \text { if } n>m,
\end{array} \quad \text { and } \quad b_{n}= \begin{cases}M & \text { if } n \leq m, \\
f\left(b_{n-1}, \ldots, b_{n-m}\right) & \text { if } n>m\end{cases}\right.
$$

Let us use strong induction on n to show that $z_{n} \leq a_{n} \leq b_{n}$. By definition, for all $k=1, \ldots, m$ we have $z_{k}=\mu \leq a_{k} \leq M=b_{k}$. Now suppose that, for some $n \geq m$, it holds that $z_{k} \leq a_{k} \leq b_{k}$ for all $k=1, \ldots, n$. Then we get

$$
\begin{aligned}
z_{n+1} & =z_{n}^{r}+z_{n-1}^{r}+\cdots+z_{n-m+1}^{r} \\
& \leq a_{n}^{r}+a_{n-1}^{r}+\cdots+a_{n-m+1}^{r}=a_{n+1} \\
& \leq b_{n}^{r}+b_{n-1}^{r}+\cdots+b_{n-m+1}^{r}=b_{n+1},
\end{aligned}
$$

so we are done.
Meanwhile, by Lemma 2, we have both $\lim _{n \rightarrow \infty} z_{n}=\alpha$ and $\lim _{n \rightarrow \infty} b_{n}=\alpha$. Therefore, by the sandwich theorem, we conclude that $\lim _{n \rightarrow \infty} a_{n}=\alpha$.

