POW 2024-10: Supremum

수리과학과 20학번 김준홍

1.
$$\sum_{n=1}^{N} \frac{1}{\sqrt{n}} \left(\sum_{i=n}^{N} x_i^2 \right)^{1/2} / \sum_{i=1}^{N} x_i$$
 has maximum value $\sum_{n=1}^{N} \frac{1}{N} \frac{\sqrt{N+1-n}}{\sqrt{n}}$ when $x_1 = \dots = x_N$.

Proof) ■

Note that $(x_1, \dots, x_n, x_{n+1})$ with $x_1 = \dots = x_{n+1}$ gives larger value than $(x_1, \dots, x_n, 0)$, so

$$\sum_{n=1}^{N} \frac{1}{N} \frac{\sqrt{N+1-n}}{\sqrt{n}}$$
 increases as N gets larger.

2.
$$A := \sup \left[\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left(\sum_{i=n}^{\infty} x_i^2 \right)^{1/2} / \sum_{i=1}^{\infty} x_i \right] = \sup_{N \in \mathbb{N}} \left[\sum_{n=1}^{N} \frac{1}{N} \frac{\sqrt{N+1-n}}{\sqrt{n}} \right] =: B.$$

Proof) Note that
$$f(\mathbf{x}) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left(\sum_{i=n}^{\infty} x_i^2 \right)^{1/2} / \sum_{i=1}^{\infty} x_i$$
 is continuous function for $x_i > 0$, so

there exists $\delta > 0$ such that $|\mathbf{x} - \mathbf{y}| < \delta$ implies $|f(\mathbf{x}) - f(\mathbf{y})| < \epsilon$.

Fix some sequence $\{x_i\}$ and $\epsilon > 0$. Since $\sum_{i=1}^{\infty} x_i < \infty$, we can choose N such that $\sum_{i=N+1}^{\infty} x_i < \delta$.

Then for **y** such that $y_i = x_i$ for $i = 1, \dots, N$ and $y_i = 0$ for i > N,

$$|\mathbf{x} - \mathbf{y}| = \sqrt{\sum_{i=N+1}^{\infty} x_i^2} \le \sum_{i=N+1}^{\infty} x_i < \delta, \text{ so } |f(\mathbf{x}) - f(\mathbf{y})| < \epsilon.$$

As ϵ is arbitrary, we can construct sequence $\mathbf{y}^{(j)}$ such that $f(\mathbf{y}^{(j)})$ converges to $f(\mathbf{x})$. Therefore,

 $f(\mathbf{x}) \leq \sup_{i} [f(\mathbf{y}^{(\mathbf{j})})] \leq B$. As this holds for arbitrary \mathbf{x} , take supremum and we get $A \leq B$.

For opposite, for arbitrary $\mathbf{y}=(a,\cdots,a,0,\cdots,0,\cdots)$ we can also construct positive sequence

$$\mathbf{x}^{(j)}$$
 such that $f(\mathbf{x}^{(j)})$ converges to $f(\mathbf{y})$. So $f(\mathbf{y}) \leq \sup_{i} [f(\mathbf{x}^{(j)})] \leq A$.

As this holds for arbitrary y, take supremum and we get $B \leq A$.

3.
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \frac{\sqrt{N+1-n}}{\sqrt{n}} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \frac{\sqrt{1-n/(N+1)}}{\sqrt{n/(N+1)}} = \lim_{N \to \infty} \frac{1}{N+1} \sum_{n=1}^{N+1} \frac{\sqrt{1-n/(N+1)}}{\sqrt{n/(N+1)}}$$
$$= \int_{0}^{1} \frac{\sqrt{1-x}}{\sqrt{x}} dx. \text{ Let } \sin(t) = \sqrt{x} \text{ and } \cos(t) = \sqrt{1-x} \text{ } (0 \le t \le \pi/2).$$

Then
$$\cos(t)dt = \frac{1}{2\sqrt{x}}dx = \frac{1}{2\sin(t)}dx$$
, so $dx = 2\cos(t)\sin(t)dt$.

So
$$\int_0^1 \frac{\sqrt{1-x}}{\sqrt{x}} dx = \int_0^{\pi/2} \frac{\cos(t)}{\sin(t)} 2\cos(t)\sin(t) dt = \int_0^{\pi/2} 2\cos^2(t) dt = \frac{\pi}{2}$$
.

By note in **1** and **2**, sup
$$\left[\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left(\sum_{i=n}^{\infty} x_i^2\right)^{1/2} / \sum_{i=1}^{\infty} x_i\right] = \frac{\pi}{2}. \blacksquare$$