
POW 2024-10: Supremum

수리과학과 20학번 김준홍

1.
N∑

n=1

1√
n

(
N∑
i=n

x2
i

)1/2/ N∑
i=1

xi has maximum value
N∑

n=1

1

N

√
N + 1− n√

n
when x1 = · · · = xN .

Proof) ■

Note that (x1, · · · , xn, xn+1) with x1 = · · · = xn+1 gives larger value than (x1, · · · , xn, 0), so
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2. A := sup

 ∞∑
n=1

1√
n

(
∞∑
i=n

x2
i

)1/2/ ∞∑
i=1

xi

 = sup
N∈N

[ N∑
n=1

1

N

√
N + 1− n√

n

]
=: B.

Proof) Note that f(x) =
∞∑
n=1

1√
n

(
∞∑
i=n

x2
i

)1/2/ ∞∑
i=1

xi is continuous function for xi > 0, so

there exists δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < ϵ.

Fix some sequence {xi} and ϵ > 0. Since
∞∑
i=1

xi < ∞, we can choose N such that
∞∑
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xi < δ.

Then for y such that yi = xi for i = 1, · · · , N and yi = 0 for i > N ,
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i ≤
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xi < δ, so |f(x)− f(y)| < ϵ.

As ϵ is arbitrary, we can construct sequence y(j) such that f(y(j)) converges to f(x). Therefore,

f(x) ≤ sup
j
[f(y(j))] ≤ B. As this holds for arbitrary x, take supremum and we get A ≤ B.

For opposite, for arbitrary y = (a, · · · , a, 0, · · · , 0, · · · ) we can also construct positive sequence

x(j) such that f(x(j)) converges to f(y). So f(y) ≤ sup
j
[f(x(j))] ≤ A.

As this holds for arbitrary y, take supremum and we get B ≤ A. ■
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By note in 1 and 2, sup
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