POW 2024-10: Supremum

수리과학과 20 학번 김준홍

1. $\sum_{n=1}^{N} \frac{1}{\sqrt{n}}\left(\sum_{i=n}^{N} x_{i}^{2}\right)^{1 / 2} / \sum_{i=1}^{N} x_{i}$ has maximum value $\sum_{n=1}^{N} \frac{1}{N} \frac{\sqrt{N+1-n}}{\sqrt{n}}$ when $x_{1}=\cdots=x_{N}$.

Proof)

Note that $\left(x_{1}, \cdots, x_{n}, x_{n+1}\right)$ with $x_{1}=\cdots=x_{n+1}$ gives larger value than $\left(x_{1}, \cdots, x_{n}, 0\right)$, so $\sum_{n=1}^{N} \frac{1}{N} \frac{\sqrt{N+1-n}}{\sqrt{n}}$ increases as N gets larger.
2. $A:=\sup \left[\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}\left(\sum_{i=n}^{\infty} x_{i}^{2}\right)^{1 / 2} / \sum_{i=1}^{\infty} x_{i}\right]=\sup _{N \in \mathbb{N}}\left[\sum_{n=1}^{N} \frac{1}{N} \frac{\sqrt{N+1-n}}{\sqrt{n}}\right]=: B$.

Proof) Note that $f(\mathbf{x})=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}\left(\sum_{i=n}^{\infty} x_{i}^{2}\right)^{1 / 2} / \sum_{i=1}^{\infty} x_{i}$ is continuous function for $x_{i}>0$, so there exists $\delta>0$ such that $|\mathbf{x}-\mathbf{y}|<\delta$ implies $|f(\mathbf{x})-f(\mathbf{y})|<\epsilon$.
Fix some sequence $\left\{x_{i}\right\}$ and $\epsilon>0$. Since $\sum_{i=1}^{\infty} x_{i}<\infty$, we can choose N such that $\sum_{i=N+1}^{\infty} x_{i}<\delta$. Then for \mathbf{y} such that $y_{i}=x_{i}$ for $i=1, \cdots, N$ and $y_{i}=0$ for $i>N$,
$|\mathbf{x}-\mathbf{y}|=\sqrt{\sum_{i=N+1}^{\infty} x_{i}^{2}} \leq \sum_{i=N+1}^{\infty} x_{i}<\delta$, so $|f(\mathbf{x})-f(\mathbf{y})|<\epsilon$.
As ϵ is arbitrary, we can construct sequence $\mathbf{y}^{(j)}$ such that $f\left(\mathbf{y}^{(\mathbf{j})}\right)$ converges to $f(\mathbf{x})$. Therefore, $f(\mathbf{x}) \leq \sup _{j}\left[f\left(\mathbf{y}^{(\mathbf{j})}\right)\right] \leq B$. As this holds for arbitrary \mathbf{x}, take supremum and we get $A \leq B$.
For opposite, for arbitrary $\mathbf{y}=(a, \cdots, a, 0, \cdots, 0, \cdots)$ we can also construct positive sequence $\mathbf{x}^{(j)}$ such that $f\left(\mathbf{x}^{(\mathbf{j})}\right)$ converges to $f(\mathbf{y})$. So $f(\mathbf{y}) \leq \sup _{j}\left[f\left(\mathbf{x}^{(\mathbf{j})}\right)\right] \leq A$.

As this holds for arbitrary \mathbf{y}, take supremum and we get $B \leq A$.
3. $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \frac{\sqrt{N+1-n}}{\sqrt{n}}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \frac{\sqrt{1-n /(N+1)}}{\sqrt{n /(N+1)}}=\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{n=1}^{N+1} \frac{\sqrt{1-n /(N+1)}}{\sqrt{n /(N+1)}}$
$=\int_{0}^{1} \frac{\sqrt{1-x}}{\sqrt{x}} \mathrm{dx}$. Let $\sin (t)=\sqrt{x}$ and $\cos (t)=\sqrt{1-x}(0 \leq t \leq \pi / 2)$.
Then $\cos (t) \mathrm{dt}=\frac{1}{2 \sqrt{x}} \mathrm{dx}=\frac{1}{2 \sin (t)} \mathrm{dx}$, so $\mathrm{dx}=2 \cos (t) \sin (t) \mathrm{dt}$.

So $\int_{0}^{1} \frac{\sqrt{1-x}}{\sqrt{x}} \mathrm{dx}=\int_{0}^{\pi / 2} \frac{\cos (t)}{\sin (t)} 2 \cos (t) \sin (t) \mathrm{dt}=\int_{0}^{\pi / 2} 2 \cos ^{2}(t) \mathrm{dt}=\frac{\pi}{2}$.
By note in 1 and 2, sup $\left[\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}\left(\sum_{i=n}^{\infty} x_{i}^{2}\right)^{1 / 2} / \sum_{i=1}^{\infty} x_{i}\right]=\frac{\pi}{2}$.

