POW 2024-05: Knotennullstelle

수리과학과 20학번 김준홍

Proposition) For *n*th cyclotomic polynomial $\Phi_n(x)$,

(0) $n = \prod_{\substack{1 \neq d \mid n}} \Phi_d(1)$ (1) $\Phi_n(1) = p$ if $n = p^r$ for prime p and $r \ge 1$ (2) $\Phi_n(1) = 1$ if $n = p_1^{r_1} \cdots p_m^{r_m}$ for distinct prime p_i and $r_i \ge 1$ for $1 \le i \le m$. **Proof**)

(0) Note that $x^n - 1 = \prod_{d|n} \Phi_d(x)$. So $\frac{x^n - 1}{\Phi_1(x)} = \frac{x^n - 1}{x - 1} = x^{n-1} + \dots + x + 1 = \prod_{1 \neq d|n} \Phi_d(x)$. Put x = 1, then $n = \prod_{1 \neq d|n} \Phi_d(1)$. (1) Use strong induction in r. For r = 1, $p = \prod_{1 \neq d|n} \Phi_d(1) = \Phi_d(p)$. Assume that it holds for $r = 1, \dots, k$. Then $p^{k+1} = \Phi_p(1) \cdots \Phi_{p^k}(1)\Phi_{p^{k+1}}(1) = p^k \Phi_{p^{k+1}}(1)$ by induction, so $\Phi_{p^{k+1}}(1) = p$.

(2) Use strong induction in $r = r_1 + \dots + r_m$. For r = 2, $p_1 p_2 = \Phi_{p_1}(1)\Phi_{p_2}(1)\Phi_{p_1p_2}(1)$, so $\Phi_{p_1p_2}(1) = 1$. Assume that it holds for $r = 2, \dots, k$. Then for r = k+1, $p_1^{r_1} \cdots p_m^{r_m} = \prod_{1 \neq d \mid n} \Phi_d(1)$. Since $\Phi_{p_i^a}(1) = p_i$ for all $1 \le a \le r_i$ and $1 \le i \le m$ by (1), and $\Phi_d(1) = 1$ for every composite d except n by induction, $\Phi_n(1) = 1$.

Claim) Collection of all Knotennullstelle numbers is **not** a discrete subset of \mathbb{C} .

Proof) By proposition, we can know that $z = e^{2\pi i m/n}$ with gcd(m, n) = 1 and n composite is Knotennullstelle, as $\Phi_n(z) = 0$ and $\Phi_n(1) = 1$. If converging Knotennullstelle sequence $\{z_n\}$ exists such that limit is also Knotennullstelle, then claim holds. (:: for any neighborhood of $\lim_{n\to\infty} z_n$, there exists some z_k in the neighborhood) One example can be $z_n = e^{2\pi i c_n}$ for

$$c_n = \frac{1}{5} \sum_{i=1}^n \frac{1}{3^i}$$
. As c_n has denominator $5 \cdot 3^n$, z_n is Knotennullstelle. Also, $\lim_{n \to \infty} c_n = \frac{1}{10}$, so

 $\lim_{n\to\infty} z_n$ is Knotennullstelle. Therefore, claim holds.