What is the determinant of the \(n\times n\) matrix \(A_n=(a_{ij}) \) where \[ a_{ij}=\begin{cases} 1 ,&\text{if } i=j, \\ x, &\text{if }|i-j|=1, \\ 0, &\text{otherwise,}\end{cases}\] for a real number \(x\)?

**GD Star Rating**

*loading...*

What is the determinant of the \(n\times n\) matrix \(A_n=(a_{ij}) \) where \[ a_{ij}=\begin{cases} 1 ,&\text{if } i=j, \\ x, &\text{if }|i-j|=1, \\ 0, &\text{otherwise,}\end{cases}\] for a real number \(x\)?

Let \( M=\begin{pmatrix} A & B \\ B^*& C \end{pmatrix}\) be a positive semidefinite Hermian matrix. Prove that \[ \operatorname{rank} M \le \operatorname{rank} A +\operatorname{rank} C.\] (Here, \(A\), \(B\), \(C\) are matrices.)

Let \(A, B\) be \(N \times N\) symmetric matrices with eigenvalues \(\lambda_1^A \leq \lambda_2^A \leq \cdots \leq \lambda_N^A\) and \(\lambda_1^B \leq \lambda_2^B \leq \cdots \leq \lambda_N^B\). Prove that

\[ \sum_{i=1}^N |\lambda_i^A – \lambda_i^B|^2 \leq Tr (A-B)^2 \]

Prove that for each positive integer \(n\), there exist \(n\) real numbers \(x_1,x_2,\ldots,x_n\) such that \[\sum_{j=1}^n \frac{x_j}{1-4(i-j)^2}=1 \text{ for all }i=1,2,\ldots,n\] and \[\sum_{j=1}^n x_j=\binom{n+1}{2}.\]

Let \(n\) be a fixed positive integer and let \(p\in (0,1)\). Let \(D_n\) be the determinant of a random \(n\times n\) 0-1 matrix whose entries are independent identical random variables, each of which is 1 with the probability \(p\) and 0 with the probability \(1-p\). Find the expected value and variance of \(D_n\).

Let \(A=(a_{ij})\) be an \(n\times n\) upper triangular matrix such that \[a_{ij}=\binom{n-i+1}{j-i}\] for all \(i\le j\). Find the inverse matrix of \(A\).

Let M be an n⨉n matrix over the reals. Prove that \(\operatorname{rank} M=\operatorname{rank} M^2\) if and only if \(\lim_{\lambda\to 0} (M+\lambda I)^{-1}M\) exists.

Let p be a prime number and let n be a positive integer. Let \(A=\left( \binom{i+j-2}{i-1}\right)_{1\le i\le p^n, 1\le j\le p^n} \) be a \(p^n \times p^n\) matrix. Prove that \( A^3 \equiv I \pmod p\), where I is the \(p^n \times p^n\) identity matrix.

Let n be a positive integer. Let ω=cos(2π/n)+i sin(2π/n). Suppose that A, B are two complex square matrices such that AB=ω BA. Prove that (A+B)^{n}=A^{n}+B^{n}.

For a positive integer n>1, let f(n) be the largest real number such that for every n×n diagonal matrix M with positive diagonal entries, if tr(M)<f(n), then M-J is invertible. Determine f(n). (The matrix J is the square matrix with all entries 1.)

(Due to a mistake, the problem is fixed at 3:30PM Friday.)