Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function satisfying \( f(0) = 0 \) and \( 0 \leq f'(x) \leq 1 \). Prove that

\[ \left( \int_0^1 f(x) dx \right)^2 \geq \int_0^1 [f(x)]^3 dx. \]

**GD Star Rating**

*loading...*

Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function satisfying \( f(0) = 0 \) and \( 0 \leq f'(x) \leq 1 \). Prove that

\[ \left( \int_0^1 f(x) dx \right)^2 \geq \int_0^1 [f(x)]^3 dx. \]

Let \(a(n)\) be the number of unordered factorizations of \(n\) into divisors larger than \(1\). Prove that \(\sum_{n=2}^{\infty} \frac{a(n)}{n^2} = 1\).

The best solution was submitted by 김기수 (KAIST 수리과학과 18학번, +4). Congratulations!

Here is the best solution of problem 2022-18.

Other solutions were submitted by 기영인 (KAIST 22학번, +3), Kawano Ren (Kaisei Senior High School, +3), Sakae Fujimoto (Osaka Prefectural Kitano High School, Freshmen, +3), 최백규 (KAIST 생명과학과 20학번, +3).

Let \(n, i\) be integers such that \(1 \leq i \leq n\). Each subset of \( \{ 1, 2, \ldots, n \} \) with \( i\) elements has the smallest number. We define \( \phi(n,i) \) to be the sum of these smallest numbers. Compute \[ \sum_{i=1}^n \phi(n,i).\]

The best solution was submitted by 김유준 (KAIST 수리과학과 20학번, +4). Congratulations!

Here is the best solution of problem 2022-17.

Other solutions were submitted by 김기수 (KAIST 수리과학과 18학번, +3), 기영인 (KAIST 22학번, +3), 이준환 (한국외국어대학교 통계학과 19학번, +3), 오준혁 (KAIST 수리과학과 20학번, +3), 신준범 (컬럼비아 대학교 20학번, +3), 이한스 (KAIST 수리과학과 20학번, +3), Kawano Ren (Kaisei Senior High School, +3), Sakae Fujimoto (Osaka Prefectural Kitano High School, Freshmen, +3).

POW will resume on Oct. 28.

Let \(a(n)\) be the number of unordered factorizations of \(n\) into divisors larger than \(1\). Prove that \(\sum_{n=2}^{\infty} \frac{a(n)}{n^2} = 1\).

For a positive integer \( n \), find all continuous functions \( f: \mathbb{R} \to \mathbb{R} \) such that

\[

\sum_{k=0}^n \binom{n}{k} f(x^{2^k}) = 0

\]

for all \( x \in \mathbb{R} \).

The best solution was submitted by Kawano Ren (Kaisei Senior High School, +4). Congratulations!

Here is the best solution of problem 2022-16.

Other solutions were submitted by 김찬우 (연세대학교 수학과, +3), 기영인 (KAIST 22학번, +3), 여인영 (KAIST 물리학과 20학번, +3). Late solutions were not graded.