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Exercise 1
For a positive integer 𝑛, find all continuous functions 𝑓 ∶ ℝ → ℝ such that
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for all 𝑥 ∈ ℝ. Answer : 𝑓 (𝑥) ≡ 0

Proof. To begin with, consider 𝑛 = 1; 𝑓 (𝑥) + 𝑓 (𝑥
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) = 0. Immediately we have 𝑓 (0) = 𝑓 (1) = 0

and 𝑓 (−𝑥) = 𝑓 (𝑥). For 0 < 𝑥 < 1, 𝑓 (𝑥) = −𝑓 (𝑥
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continuity. Similarly, 𝑓 (𝑥) = −𝑓 (𝑥
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) → 0 for all 𝑥 > 1.

Therefore 𝑓 (𝑥) = 0 for all 𝑥 ∈ ℝ. For the purpose of mathematical induction, let us assume
that the claim holds for a positive integer 𝑛. By the identity (
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) for 1 ≤ 𝑘 ≤ 𝑛,

we may express
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) = 𝑔(𝑥) + 𝑔(𝑥
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where 𝑔(𝑥) = ∑
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). Then we have 𝑔(𝑥) ≡ 0 and 𝑓 (𝑥) ≡ 0 by the induction hypothesis.
Thus the claim also holds for 𝑛 + 1 and by the mathematical induction the claim is true for all
positive integers.
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