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1 Formulation of Unordered Factorizations

For n ≥ 2, let Xn be the set of unordered factorizations of n into divisors larger
than 1. The size of Xn is equal to a(n) by definition. Observe that an unordered
factorization can be interpreted as data of a sequence of exponents ed ∈ Z≥0 for
d ≥ 2 and d | n such that n =

∏
d|n d

ed . This implies that an exponent sequence
uniquely determines an unordered factorization, and vice versa.

Let E be the set of all sequences of nonnegative integers e = {ed}∞d=2 starting
at index 2 such that there exists some N = N(e) ≥ 1 that makes en = 0 for

every n > N . Define a function π : E → Z>0 by e 7→
∏∞
d=2 d

ed =
∏N(e)
d=2 d

ed .
Because every element of E is finitely supported, the product is finite and this
map is well defined.

Observe that there is a bijection Xn
∼= π−1(n) for n ≥ 2, as we discussed

about formulation of unordered factorization. As convention, let a(1) := 1, in
order to make X1

∼= π−1(1) where π−1(1) is the singleton set of the sequence of
zeros. a(1) = 1 can be justified by considering 1 to have one empty factorization.

This does not matter to the answer as the desired sum
∑∞
n=2

a(n)
n2 starts from

n = 2. Also, let identify Xn as the subset π−1(n) of E using this bijection.

2 Intuitive Result with Näıve Infinite Sum

To get a result not rigorous but intuitive, let construct an equation containing
the desired sum:

1 +

∞∑
n=2

a(n)

n2
=

∞∑
n=1

a(n)

n2
=

∞∑
n=1

∑
e∈Xn

1

n2
=

∞∑
n=1

∑
e∈Xn

1

π(e)2
.

The last sum is taken over E; note that E is countable, as it is a countable
union of finite sets Xn. If the sum

∑
e∈E

1
π(e)2 is convergent, then it converges

absolutely and can be reordered in arbitrary way. For N ∈ Z≥1, let

EN = {e ∈ E : ∀n.(n > N =⇒ en = 0)} ⊂ E
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be the set of exponent sequences that vanishes after N . As EN → E as N →∞,
one has

∑
e∈EN

1
π(e)2 →

∑
e∈E

1
π(e)2 . Observe that the sum

∑
e∈EN

1
π(e)2 is equal

to 2N
N+1 . For N = 1,

∑
e∈E1

1
π(e)2 = 1 = 2·1

1+1 . For N ≥ 2, with the induction

hypothesis
∑
e∈EN−1

1
π(e)2 = 2(N−1)

N , the sum is

∑
e∈EN

1

π(e)2
=

∞∑
e2=0

∞∑
e3=0

· · ·
∞∑

eN=0

1

π(e)2

=

∞∑
e2=0

∞∑
e3=0

· · ·
∞∑

eN=0

1∏N
d=2 d

2ed

=

∞∑
e2=0

∞∑
e3=0

· · ·
∞∑

eN−1=0

1∏N−1
d=2 d2ed

∞∑
eN=0

·
(

1

N2eN

)

=
∑

e∈EN−1

1

π(e)2
· N2

N2 − 1

= 2 · N − 1

N
· N2

(N − 1)(N + 1)
=

2N

N + 1
.

Then
∑
e∈E

1
π(e)2 = lim

N→∞

∑
e∈EN

1
π(e)2 = lim

N→∞
2N
N+1 = 2, hence

∑∞
n=2

a(n)
n2 =

−1 + 2 = 1 is deduced.
This solution is problematic as the sum over an infinte set is used without

rigorous justification. For example, in the undergraduate level of analysis, one
can sum only sequences of real or complex numbers. Hence the sum

∑
x∈S f(x)

over a countable set S must be followed by some explicit bijective “sequencifi-
cation” q : S → Z≥1 and be taken as

∑∞
n=1 f(q−1(n)), while the above solution

does not give such.

3 Proof

There is an alternative approach that uses only infinite series. Let recall the
concepts of convergence and infinite series from analysis, and some theorems
without proof.

Definition 3.1 (Convergence of sequence). Let {an} be a sequence of real
numbers. It is said to converges to L if, for arbitrary ε > 0, there exists N ∈ Z≥1
such that |an − L| < ε for every n > N . This is denoted by lim

n→∞
an = L. {an}

converges if there exists some L such that it is converge to L.

Definition 3.2 (Infinite series). Let {an} be a sequence of real numbers. If the
sequence of partial sums {

∑n
i=1 ai} converges to L, it is said that the infinite se-

ries
∑∞
n=1 an converges to L, and denoted by

∑∞
n=1 an = L.

∑∞
n=1 an converges

if there exists some L such that
∑∞
n=1 an converges to L.
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Theorem 3.3 (Monotone convergence theorem). Suppose {an} is an increasing
sequence, i.e. an ≤ am for any n ≤ m. If there is a real number M such that
an < M for every n, then an converges and lim

n→∞
an ≤M .

Corollary 3.4. Let {an} be a sequence of positive real numbers. If every nth
partial sum is bounded by some M > 0, i.e.

∑n
i=1 ai ≤M for every n, then the

infinite series
∑∞
n=1 an converges and

∑∞
n=1 an ≤M .

Theorem 3.5. Let {an} , {bn} be convergent sequences with limits A,B, respec-
tively. Then {anbn} converges to AB.

Firstly, let investigate the upper bound for
∑∞
n=1

a(n)
n2 . For N ∈ Z≥1 and

M ∈ Z≥0, let

EN,M = {e ∈ E : ∀n.(en ≤M) ∧ (n > N =⇒ en = 0)} ⊂ EN

be the set of exponent sequences such that vanishes after N , and every compo-
nent is bounded by M . As EN,M is a finite set of (M +1)N−1 elements, the sum
over EN,M is well defined. Observe that EN,N contains Xn for 1 ≤ n ≤ N . For
e ∈ Xn and 2 ≤ d ≤ N , one has

ed ≤ ded ≤
N∏
d=2

ded = π(e) = n ≤ N

hence e ∈ EN,N . The partial sum
∑N
n=1

a(n)
n2 is bounded by

∑
e∈EN,N

1
π(e)2 :

N∑
n=1

a(n)

n2
=

N∑
n=1

∑
e∈Xn

1

π(e)2
≤

∑
e∈EN,N

1

π(e)2
=

N∑
e2=0

N∑
e3=0

· · ·
N∑

eN=0

1

π(e)2
.

From the definition π(e) =
∏N
d=2 d

ed , one has

∑
e∈EN,N

1

π(e)2
=

N∑
e2=0

N∑
e3=0

· · ·
N∑

eN=0

1∏N
d=2 d

2ed
=

N∏
d=2

(
N∑

ed=0

1

d2ed

)
.

This sum is bounded by the sum over EN :

N∏
d=2

(
N∑

ed=0

1

d2ed

)
≤

N∏
d=2

( ∞∑
ed=0

1

d2ed

)
=

N∏
d=2

d2

d2 − 1
=

2N

N + 1
.

As 2N
N+1 ≤ 2, deduce that

∑∞
n=1

a(n)
n2 converges and

∑∞
n=1

a(n)
n2 ≤ 2 using corol-

lary 3.4. Note that the limit lim
M→∞

∑
e∈EN,M

1
π(e)2 is equal to 2N

N+1 , by theorem

3.5.
Claim that

∑∞
n=1

a(n)
n2 is equal to 2. Observe that EN,M is contained in∐K

n=1Xn where K = (N !)M . For e ∈ EN,M , one has

π(e) =

N∏
d=2

ded ≤
N∏
d=2

dM = (N !)M = K
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hence e ∈
∐K
n=1Xn. The sum over EN,M gives a lower bound of

∑∞
n=1

a(n)
n2 :

∑
e∈EN,M

1

π(e)2
≤

K∑
n=1

∑
e∈Xn

1

π(e)2
=

K∑
n=1

a(n)

n2
≤
∞∑
n=1

a(n)

n2
.

Note that this bound holds for every N and M . Taking the limit M → ∞,

deduce that 2N
N+1 ≤

∑∞
n=1

a(n)
n2 for every N . Taking the limit N → ∞, deduce

that
∑∞
n=1

a(n)
n2 ≥ 2. Conclude that

∑∞
n=1

a(n)
n2 = 2 and

∑∞
n=2

a(n)
n2 = 1.
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