Let \(p\) be a prime number at least three and let \(k\) be a positive integer smaller than \(p\). Given \(a_1,\dots, a_k\in \mathbb{F}_p\) and distinct elements \(b_1,\dots, b_k\in \mathbb{F}_p\), prove that there exists a permutation \(\sigma\) of \([k]\) such that the values of \(a_i + b_{\sigma(i)}\) are distinct modulo \(p\).

The best solution was submitted by 이명규 (KAIST 전산학부, +4). Congratulations!

Here is the best solution of problem 2023-12.

Other solutions were submitted by 김찬우 (연세대학교 수학과 22학번, +3), 박준성 (KAIST 수리과학과 석박통합과정 22학번, +3), 채지석 (KAIST 수리과학과 석박통합과정 21학번, +3), 최민규 (한양대학교 의학대학 졸업, +3), Anar Rzayev (KAIST 전산학부 19학번, +3). Late solutions were not graded.

**GD Star Rating**

*loading...*