# POW2023-11 

Heeseung Jeong

May 2023

## Problem

Let $S$ be a set of distinct 20 integers. A set $T_{A}$ is defined as $T_{A}:=\left\{s_{1}+s_{2}+s_{3} \mid\right.$ $\left.s_{1}, s_{2}, s_{3} \in S\right\}$. What is the smallest possible cardinality of $T_{A}$ ?

## Solution

I'll find it for arbitrary set $S$ with $n$ distinct integer.
Let $S=\left\{s_{1}, s_{2}, s_{3}, \cdots, s_{n}\right\}$ with $s_{i}<s_{i+1}$ for $i=1,2, \cdots, n-1 . T_{A}$ contains at least $n$ distinct integers $3 s_{1}<3 s_{2}<\cdots<3 s_{n}$ since $3 s_{i}=s_{i}+s_{i}+s_{i}$ for all $i=1,2, \cdots, n$. Furthermore, $T_{A}$ contains at least $2(n-1)$ elements more since for every $i=1,2, \cdots, n-1$, there are two distinct elements $s_{i}+s_{i}+s_{i+1}$ and $s_{i}+s_{i+1}+s_{i+1}$ in $T_{A}$ between $3 s_{i}$ and $3 s_{i+1}$. Thus $T_{A}$ contains at least $3 n-2$ elements.

Let $S=\{0,1, \cdots, n-1\}$. Then clearly $T_{A}=\{0,1, \cdots, 3 n-3\}$ and $\left|T_{A}\right|=$ $3 n-2$. Thus minimal cardinality of $T_{A}$ is $3 n-2$. For $n=20$ case, it is 58 .

