\[
P(23 - 10)
\]

So, \(p^4 + q^4 + 1 = p^4q + p^4q + 1 = (p^4 + 1)(q^4 + 1) \pmod{19} \).

Since \(p > 1, q^4 + 1 \) and \(p, q \) are prime, \(p \mid q^4 + 1 \) and \(q \mid q^4 + 1 \).

WLOG, \(p > q \). Let \(a_q \) be the smallest number such that \(q^a + 1 \equiv 1 \pmod{p} \).

Since \(q^4 + 1 \equiv 1 \pmod{19} \), \(a_q \mid 19 \) (If not, then \(\exists \, 0 < r < a_q \) such that \(q^r \equiv 1 \pmod{19} \), which is contradiction.)

So, \(a_q = 1, 3, 9, 29 \). For the case of \(a_q = 1, 9, \) since \(\forall q \in \mathbb{Z}, \) \(a_q \) could not be \(1, 9 \). So \(a_q \) should be \(2, 29 \).

Suppose \(q > 2 \), then \(q^4 = (q^2)^2 \equiv (q^2)^2 \pmod{p} \), \(q^2 \equiv 1 \pmod{p} \).

Since \(p > q \), \(p = q^2 + 1 \). However, \(p, q \) are prime, so \(p \neq q + 1 \).

For \(q = 2 \), then \(2^2 = 1 \pmod{p} \), \(p = 2147 \).

Since \(2^2 + 5^4 + 1 = 3120 \), (2.5) satisfies the condition.

By Fermat's Little Theorem, \(q^p = 1 \pmod{p} \). By the definition of \(a_q \), \(a_q = p - 1 \), so \(p = 2a_q + 1 \) for some \(k \in \mathbb{Z} \). Then

\(p^4 + 1 = (2a_q + 1)^4 + 1 = 9, 9(9, 1) + 1 \equiv 0 \pmod{a_q} \) (for some polynomial \(G(9, k) \)).

This indicates that \(q \mid 2 \), which means \(q = 2 \).

As seen in i) \(a_q = 2 \), (2.5) satisfies the condition.

Hence, (2.5) is the only pair for \(p_q \mid p^4 + q^4 + 1 \), where \(p, q \) are prime.