Let p be a prime number at least three and let k be a positive integer smaller than p. Given $a_1, \dots, a_k \in \mathbb{F}_p$ and distinct elements $b_1, \dots, b_k \in \mathbb{F}_p$, prove that there exists a permutation σ of [k] such that the values of $a_i + b_{\sigma(i)}$ are distinct modulo p.

Solution. See [1]. We take advantage of the following lemmas.

Lemma 1 (Combinatorial Nullstellensatz). Let \mathbb{F} be an arbitrary field, and let $f = f(x_1, \dots, x_n)$ be a polynomial in $\mathbb{F}[x_1, \dots, x_n]$. Suppose the degree $\deg(f)$ of f is $\sum_{i=1}^n t_i$, where each t_i is a nonnegative integer, and suppose the coefficient of $\prod_{i=1}^n x_i^{t_i}$ in f is nonzero. Then, if S_1, \dots, S_n are subsets of \mathbb{F} with $|S_i| > t_i$, there are $s_1 \in S_1, \dots, s_n \in S_n$ so that $f(s_1, \dots, s_n) \neq 0$.

Proof. Refer to
$$[2]$$
.

Lemma 2 (Vandermonde determinant). Let

$$V = \begin{bmatrix} x_j^{i-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{bmatrix}$$

be a square Vandermonde matrix. Then

$$\det(V) = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Proof. Refer to [3].

Let $f = f(x_1, \dots, x_k)$ be a polynomial over \mathbb{F}_p defined as

$$f(x_1, \dots, x_k) = \prod_{1 \le i < j \le k} (x_i - x_j) \prod_{1 \le i < j \le k} [(a_i + x_i) - (a_j + x_j)].$$

Let B be a subset of \mathbb{F}_p with |B| = k. If we can apply Lemma 1 with $S_1 = \cdots = S_k = B$, then there are $b_i \in B$ (with indices possibly different from the ones given in the problem) such that

$$f(b_1, \dots, b_k) = \prod_{1 \le i < j \le k} (b_i - b_j) \prod_{1 \le i < j \le k} [(a_i + b_i) - (a_j + b_j)] \ne 0.$$

Thus, the elements b_i of B are pairwise distinct, and so are the values of $a_i + b_i$ as desired. It remains to check the conditions of the lemma. Let $t_1 = t_2 = \cdots = t_k = k - 1$. Note that

$$\deg(f) = \binom{k}{2} + \binom{k}{2} = k(k-1) = \sum_{i=1}^{k} t_i.$$

Consider the monomial $g = \prod_{i=1}^k x_i^{k-1} = k(k-1)$. Since $\deg(f) = \deg(g) = k(k-1)$, the constants a_i are irrelevant to the coefficient of g. Hence, it coincides with the one of g in the polynomial

$$\prod_{1 \le i < j \le k} (x_i - x_j) \prod_{1 \le i < j \le k} (x_i - x_j) = \prod_{1 \le i < j \le k} (x_i - x_j)^2.$$

Student ID: 2020**** Name: 이명규

By Lemma 2,

$$\prod_{1 \le i < j \le k} (x_i - x_j) = (-1)^{\binom{k}{2}} \prod_{1 \le i < j \le k} (x_j - x_i)$$

$$= (-1)^{\binom{k}{2}} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_k \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{k-1} & x_2^{k-1} & \cdots & x_k^{k-1} \end{vmatrix} = \begin{vmatrix} x_1^{k-1} & x_2^{k-1} & \cdots & x_k^{k-1} \\ x_1^{k-2} & x_2^{k-2} & \cdots & x_k^{k-2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{vmatrix}$$

$$= (-1)^{\binom{k}{2}} \sum_{\sigma \in \mathbb{S}_n} \operatorname{sgn}(\sigma) \prod_{i=1}^k x_{\sigma(i)}^{i-1} = \sum_{\sigma \in \mathbb{S}_n} \operatorname{sgn}(\sigma) \prod_{i=1}^k x_{\sigma(i)}^{k-i}.$$

We have

$$\left[\prod_{1 \le i < j \le k} (x_i - x_j)\right]^2 = (-1)^{\binom{k}{2}} \left[\sum_{\sigma \in \mathbb{S}_n} \operatorname{sgn}(\sigma) \prod_{i=1}^k x_{\sigma(i)}^{i-1}\right] \left[\sum_{\sigma \in \mathbb{S}_n} \operatorname{sgn}(\sigma) \prod_{i=1}^k x_{\sigma(i)}^{k-i}\right].$$

Therefore, the coefficient of g is $(-1)^{\binom{k}{2}}k!$, which is nonzero modulo p because p is an odd prime and k < p. This completes the proof.

References

- [1] Noga Alon. Additive latin transversals. Israel Journal of Mathematics, 117:125–130, 2000.
- [2] Noga Alon. Combinatorial nullstellensatz. Combinatorics, Probability and Computing, 8(1-2):7–29, 1999.
- [3] Ira Gessel. Tournaments and vandermond's determinant. *Journal of Graph Theory*, 3(3):305–307, 1979.