Let \(f:\mathbb R\to\mathbb R\) be a function such that \[ -1\le f(x+y)-f(x)-f(y)\le 1\] for all reals \(x\), \(y\). Does there exist a constant \(c\) such that \( \lvert f(x)-cx\rvert \le 1\) for all reals \(x\)?
loading...
Let \(f:\mathbb R\to\mathbb R\) be a function such that \[ -1\le f(x+y)-f(x)-f(y)\le 1\] for all reals \(x\), \(y\). Does there exist a constant \(c\) such that \( \lvert f(x)-cx\rvert \le 1\) for all reals \(x\)?
Find the minimum \(m\) (if it exists) such that every convex function \(f:[-1,1]\to[-1,1]\) has a constant \(c\) such that \[ \int_{-1}^1 \lvert f(x)-c\rvert \,dx \le m.\]
Prove or disprove the following statement:
There exists a function \( f : \mathbb{R} \to \mathbb{R} \) such that
(1) \( f \equiv 0 \) almost everywhere, and
(2) for any nonempty open interval \(I\), \( f(I) = \mathbb{R} \).
Let \(n\) be a fixed positive integer. Find all functions \( f:\mathbb{R}\to\mathbb{R}\) satisfying \[ f(x^{n+1}-y^{n+1})=(x-y)[f(x)^n+f(x)^{n-1}f(y)+\cdots+f(x)f(y)^{n-1}+f(y)^n].\]
Determine all nonnegative functions f(x,y) and g(x,y) such that \[ \left(\sum_{i=1}^n a_i b_i \right)^2 \le \left( \sum_{i=1}^n f(a_i,b_i)\right) \left(\sum_{i=1}^n g(a_i,b_i)\right) \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right)\] for all reals \(a_i\), \(b_i\) and all positive integers n.
Let X be a finite non-empty set. Suppose that there is a function \(f:X\to X\) such that \( f^{20120407}(x)=x\) for all \(x\in X\). Prove that the number of elements x in X such that \(f(x)\neq x\) is divisible by 20120407.
Let \(f:\mathbb{R}^n\to \mathbb{R}^{n-1}\) be a function such that for each point a in \(\mathbb{R}^n\), the limit $$\lim_{x\to a} \frac{|f(x)-f(a)|}{|x-a|}$$ exists. Prove that f is a constant function.
Let f(x) be a continuous function on I=[a,b], and let g(x) be a differentiable function on I. Let g(a)=0 and c≠0 a constant. Prove that if
|g(x) f(x)+c g′(x)|≤|g(x)| for all x∈I,
then g(x)=0 for all x∈I.
Let us write \([n]=\{1,2,\ldots,n\}\). Let \(a_n\) be the number of all functions \(f:[n]\to [n]\) such that \(f([n])=[k]\) for some positive integer \(k\). Prove that \[a_n=\sum_{k=0}^{\infty} \frac{k^n}{2^{k+1}}.\]
Let f be a differentiable function. Prove that if \(\lim_{x\to\infty} (f(x)+f'(x))=1\), then \(\lim_{x\to\infty} f(x)=1\).