Let us write \([n]=\{1,2,\ldots,n\}\). Let \(a_n\) be the number of all functions \(f:[n]\to [n]\) such that \(f([n])=[k]\) for some positive integer \(k\). Prove that \[a_n=\sum_{k=0}^{\infty} \frac{k^n}{2^{k+1}}.\]

**GD Star Rating**

*loading...*

Let us write \([n]=\{1,2,\ldots,n\}\). Let \(a_n\) be the number of all functions \(f:[n]\to [n]\) such that \(f([n])=[k]\) for some positive integer \(k\). Prove that \[a_n=\sum_{k=0}^{\infty} \frac{k^n}{2^{k+1}}.\]

Minjae Park노테이션이 잘 이해가 안가는데 f의 도메인과 레인지가 자연수인건가요 아니면 집합인건가요? f:{[n]}→{[n]}이어야하지 않나요?

Minjae Park아아… 다시 생각해보니깐 f([n])={f(1),…,f(n)}을 의미하는거겠네요. 잠시 착각했어요ㅋ

구도완오른쪽에 저 무한급수는 도데체 어떻게 나온걸까요?;;

Minjae Park아마 오른쪽 무한급수에서부터 시작해서 문제를 만들었겠죠.

익명아… 어렵다 ㅜㅜㅜㅜ