08 Let A be a 16×16 matrix whose entries are either 1 or -1 . What is the maximum value of the determinant of A ?

Solution. Let $A=\left[a_{i j}\right] \in\{ \pm 1\}^{n \times n}$ and $B=\left[b_{i j}\right]=A^{T} A$. Note that

$$
\operatorname{tr} B=\sum_{i=1}^{n} b_{i i}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2}=n^{2} .
$$

Since B is symmetric, by the spectral theorem, it is orthogonally diagonalizable. There exists some orthogonal matrix Q such that

$$
Q^{T} B Q=\Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

where λ_{j} 's are the eigenvalues of B. By the AM-GM inequality, we have

$$
\operatorname{det} B=\operatorname{det} \Lambda=\prod_{j=1}^{n} \lambda_{j} \leq\left(\frac{1}{n} \sum_{j=1}^{n} \lambda_{j}\right)^{n}=\left(\frac{\operatorname{tr} B}{n}\right)^{n}=n^{n} .
$$

Hence, we obtain a bound $|\operatorname{det} A|=\sqrt{\operatorname{det} B} \leq n^{n / 2}$. The equality holds when

$$
\Lambda=n I_{n}=Q^{T} B Q=Q^{T} A^{T} A Q=(A Q)^{T}(A Q)
$$

We can construct a sequence of $H_{n} \in\{ \pm 1\}^{n \times n}$ such that $H_{n}^{T} H_{n}=n I_{n}$ as follows. Let $H_{1}=[1]$ and define

$$
H_{2^{k+1}}=\left[\begin{array}{rr}
H_{2^{k}} & H_{2^{k}} \\
H_{2^{k}} & -H_{2^{k}}
\end{array}\right] .
$$

For example,

$$
\begin{aligned}
H_{2} & =\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right], \\
H_{4} & =\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] .
\end{aligned}
$$

Furthermore, $\operatorname{det} H_{2^{k+1}}=\operatorname{det}\left(-2 H_{2^{k}}^{2}\right)=(-2)^{2^{k}}\left(\operatorname{det} H_{2^{k}}\right)^{2}>0$ if $k>0$. Therefore, there is a matrix $H_{16} \in\{ \pm 1\}^{16 \times 16}$ such that $\operatorname{det} H_{16}=16^{8}=2^{32}$.

Remark. This problem is called Hadamard's maximal determinant problem, and H_{n} is known as a Hadamard matrix of order n. The method of constructing a sequence $\left\{H_{2^{k}}\right\}$ of Hadamard matrices was first introduced by James Joseph Sylvester in 1867.

