POW 2018-18 A random walk on the clock

2017 Seokmin Ha

October 5, 2018

Let's generalize the problem and consider the case when there are n points evenly spaced on a circle. Denote the points by 1 through n in clockwise order and assume that the particle starts at 1 . Denote $q_{k}=\mathbb{P}$ (particle P stops at k for the last) for $k \in\{1,2, \cdots, n\} . q_{1}=0$ since particle starts at 1 . Let $p(a, b)$ be the probability that the particle at x visits $x+a$ before visiting $x-b$. This can be considered as a random walk(with equal probability of going left and right) in 1 dimension where a particle starts at the origin and stops when it reaches to a or $-b$. Let p_{k} be a probability that particle reaches to a before $-b$ starting at $k \in[-b, a] \cap \mathbb{Z}$. Then, $p(a, b)=p_{0}$. We get the following recurrence relation:

$$
p_{k}=\frac{1}{2} p_{k+1}+\frac{1}{2} p_{k-1}
$$

with $p_{-b}=0, p_{a}=1$. The characteristic polynomial of this equation is

$$
x=\frac{1}{2} x^{2}+\frac{1}{2} \text { or } x^{2}-2 x+1=0
$$

which has $x=1$ as double root. Therefore, the general term of p_{k} can be expressed as

$$
p_{k}=c_{1} 1^{k}+c_{2} k 1^{k}=c_{1}+c_{2} k
$$

for some constants c_{1} and c_{2}. Putting the conditions $p_{-b}=0, p_{a}=1$, we have $c_{1}=\frac{b}{a+b}$ and $c_{2}=\frac{1}{a+b}$. Thus, $p_{k}=\frac{b+k}{a+b}$ and $p(a, b)=p_{0}=\frac{b}{a+b}$.

Fix $k \in\{3,4, \cdots, n-2\}$. Then, $k-1, k+1 \in\{2,3, \cdots, n-1\}$. Consider a move of the particle such that k is the last number to be visited. Then, $k-1$ and $k+1$ must be visited before k. Consider the first time when $k-1$ or $k+1$ is visited.

CASE $1 k-1$ is visited for the first time $(k-1$ before $k+1)$
The probability for this case is $p(k-2, n-k)$. After it reaches $k-1$, the probability of k visited last is same as probability of 2 visited last starting from 1 , which is same as q_{2}. Thus, the probability for case 1 is $p(k-2, n-k) q_{2}=\frac{n-k}{n-2} q_{2}$.
CASE $2 k+1$ is visited for the first time $(k+1$ before $k-1)$
The probability for this case is $p(n-k, k-2)$. After it reaches to $k+1$, the probability of k visited last is same as probability of 2 visited last starting from 1(by symmetry), which is same as q_{2}. Thus, the probability for case 2 is $p(n-k, k-2) q_{2}=\frac{k-2}{n-2} q_{2}$
Thus, $q_{k}=\frac{n-k}{n-2} q_{2}+\frac{k-2}{n-2} q_{2}=q_{2}$ for $k \in\{3,4, \cdots, n-2\}$. Also, $q_{n-1}=q_{2}$ by symmetry. Therefore,

$$
q_{2}=q_{3}=\cdots=q_{n}=\frac{1}{n-1}, q_{1}=0
$$

and $(n-1)$ points except for the starting point have the equal probability for the particle P to stop.
Remark 1. q_{2} can also be directly calculated. Starting from 1, in order for 2 be the last visited number, 3 must be visited before 2. Thus,

$$
q_{2}=p(n-2,1)=\frac{1}{n-1}
$$

