Simultaneously diagonalizable matrices KAIST POW 2023-22

김찬우, 연세대학교 수학과 22학번

25 November 2023

Problem. Does there exist a nontrivial subgroup G of $\mathbf{GL}(10, \mathbb{C})$ such that each element in G is diagonalizable but the set of all the elements of G is not simultaneously diagonalizable?

Solution. Let's lay out the facts we need.

Fact 1. Every element of a finite subgroup G of $\mathbf{GL}(10, \mathbb{C})$ is diagonalizable.

Proof. For any $A \in G$, $A^{|G|} = I$, so the minimal polynomial of A divides $x^{|G|} - 1 = 0$. Since $x^{|G|} - 1 = 0$ has |G| distinct roots in \mathbb{C} , A is diagonalizable.

Fact 2. If $A, B \in \mathbf{GL}(10, \mathbb{C})$ are diagonalizable, then they are simultaneously diagonalizable only if AB = BA.

Proof. If A and B are simultaneously diagonalizable, there exists $P \in \mathbf{GL}(10, \mathbb{C})$ such that both PAP^{-1} and PBP^{-1} are diagonal matrices. Since two diagonal matrices commute, we can see that

$$AB = P^{-1} (PAP^{-1}) (PBP^{-1}) P = P^{-1} (PBP^{-1}) (PAP^{-1}) P = BA$$

Define $A, B \in \mathbf{GL}(10, \mathbb{C})$ as

	(ω^0)	0	0	•••	$0 \rangle$			$\left(0 \right)$	1	0	•••	0/
A =	0	ω^1	0	• • •	0		B =	0	0	1	• • •	0
	0	0	ω^2	•••	0			:	:	:	·.	:
	:	:	:	·	:	ŕ		0		.0		1
	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	0	0		ω^9			$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	0	0		$\bar{0}$

where $\omega = e^{\frac{2\pi i}{10}}$. Then we have $A^{10} = B^{10} = I$ and $AB = \omega^{-1}BA$. Thus the subgroup $G = \langle A, B \rangle$ of **GL** (10, \mathbb{C}) generated by two elements A and B is finite, and is not Abelian since $AB = \omega^{-1}BA \neq BA$. Since $G \neq \mathbf{GL}(n, \mathbb{C})$ is obvious, the previous two facts show that G is the desired nontrivial subgroup of **GL** (10, \mathbb{C}).