Simultaneously diagonalizable matrices
 KAIST POW 2023-22

김찬우, 연세대학교 수학과 22 학번

25 November 2023

Problem. Does there exist a nontrivial subgroup G of $\mathbf{G L}(10, \mathbb{C})$ such that each element in G is diagonalizable but the set of all the elements of G is not simultaneously diagonalizable?

Solution. Let's lay out the facts we need.
Fact 1. Every element of a finite subgroup G of $\mathbf{G L}(10, \mathbb{C})$ is diagonalizable.
Proof. For any $A \in G, A^{|G|}=I$, so the minimal polynomial of A divides $x^{|G|}-1=0$. Since $x^{|G|}-1=0$ has $|G|$ distinct roots in \mathbb{C}, A is diagonalizable.

Fact 2. If $A, B \in \mathbf{G L}(10, \mathbb{C})$ are diagonalizable, then they are simultaneously diagonalizable only if $A B=B A$.

Proof. If A and B are simultaneously diagonalizable, there exists $P \in \mathbf{G L}(10, \mathbb{C})$ such that both $P A P^{-1}$ and $P B P^{-1}$ are diagonal matrices. Since two diagonal matrices commute, we can see that

$$
A B=P^{-1}\left(P A P^{-1}\right)\left(P B P^{-1}\right) P=P^{-1}\left(P B P^{-1}\right)\left(P A P^{-1}\right) P=B A
$$

Define $A, B \in \mathbf{G L}(10, \mathbb{C})$ as

$$
A=\left(\begin{array}{ccccc}
\omega^{0} & 0 & 0 & \cdots & 0 \\
0 & \omega^{1} & 0 & \cdots & 0 \\
0 & 0 & \omega^{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \omega^{9}
\end{array}\right), \quad B=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

where $\omega=e^{\frac{2 \pi i}{10}}$. Then we have $A^{10}=B^{10}=I$ and $A B=\omega^{-1} B A$. Thus the subgroup $G=\langle A, B\rangle$ of $\mathbf{G L}(10, \mathbb{C})$ generated by two elements A and B is finite, and is not Abelian since $A B=\omega^{-1} B A \neq B A$. Since $G \neq \mathbf{G L}(n, \mathbb{C})$ is obvious, the previous two facts show that G is the desired nontrivial subgroup of $\mathbf{G L}(10, \mathbb{C})$.

