POW2023-23

Minseo Shin

December 2023

1 Solution

It suffices to prove the following statement, which obviously implies the statement in the problem:

For every positive integer n, if $f : \{1, 2, ..., n\} \to \mathbb{R}$ is a function such that (i) f(1) = 0, (ii) $f(n) \ge 0$, and (iii) $f(a + b) + f(b + c) + f(c + a) \ge f(a) + f(b) + f(c) + f(a + b + c)$ for all $1 \le a, b, c \le n - 2$ with $a + b + c \le n$, then f is nonnegative on its domain.

proof) If n < 3, then the statement holds trivially. Assume $n \ge 3$ and let f be a function satisfying the hypotheses in the statement. For $2 \le k \le n-1$, we have

$$f(k) + f(n-1) + f(n-k+1) \ge f(k-1) + f(n-k) + f(n)$$

by letting a = 1, b = k - 1, and c = n - k. Therefore,

$$\sum_{k=2}^{n-1} \left(f(k) + f(n-1) + f(n-k+1) \right) \ge \sum_{k=2}^{n-1} \left(f(k-1) + f(n-k) + f(n) \right),$$

which is simplified to

$$nf(n-1) \ge (n-2)f(n).$$

Since $f(n) \ge 0$, we have $f(n-1) \ge 0$. Therefore, by induction on n, the statement holds for all positive integers.