POW2023-23

Minseo Shin

December 2023

1 Solution

It suffices to prove the following statement, which obviously implies the statement in the problem:

For every positive integer n, if $f:\{1,2, \ldots, n\} \rightarrow \mathbb{R}$ is a function such that (i) $f(1)=0$, (ii) $f(n) \geq 0$, and (iii) $f(a+b)+f(b+c)+f(c+a) \geq$ $f(a)+f(b)+f(c)+f(a+b+c)$ for all $1 \leq a, b, c \leq n-2$ with $a+b+c \leq n$, then f is nonnegative on its domain.
proof) If $n<3$, then the statement holds trivially. Assume $n \geq 3$ and let f be a function satisfying the hypotheses in the statement. For $2 \leq k \leq n-1$, we have

$$
f(k)+f(n-1)+f(n-k+1) \geq f(k-1)+f(n-k)+f(n)
$$

by letting $a=1, b=k-1$, and $c=n-k$. Therefore,

$$
\sum_{k=2}^{n-1}(f(k)+f(n-1)+f(n-k+1)) \geq \sum_{k=2}^{n-1}(f(k-1)+f(n-k)+f(n))
$$

which is simplified to

$$
n f(n-1) \geq(n-2) f(n)
$$

Since $f(n) \geq 0$, we have $f(n-1) \geq 0$. Therefore, by induction on n, the statement holds for all positive integers.

