POW 2025-02

2019____ Anar Rzayev

March 10, 2025

Theorem 1. Let X and Y be closed manifolds, and suppose X is a finite-sheeted cover of Y. If $b_1(Y) > 0$, then $b_1(X) > 0$.

Proof. Let

 $p\colon X \longrightarrow Y$

be a covering map with finite degree; in other words, p is a finite-sheeted cover. By definition, $b_1(\cdot)$ denotes the first Betti number over \mathbf{Q} , so

 $b_1(Y) = \dim_{\mathbf{Q}} H^1(Y; \mathbf{Q}).$

Equivalently, we can interpret $b_1(Y)$ as the rank of the abelianization of $\pi_1(Y)$:

$$b_1(Y) = \dim_{\mathbf{Q}} \left(\pi_1(Y)_{\mathrm{ab}} \otimes_{\mathbb{Z}} \mathbf{Q} \right),$$

where

$$\pi_1(Y)_{\rm ab} = \frac{\pi_1(Y)}{[\pi_1(Y), \pi_1(Y)]}.$$

Since $b_1(Y) > 0$, there exists a nontrivial homomorphism

$$\varphi \colon \pi_1(Y) \twoheadrightarrow \mathbb{Z}.$$

Indeed, having $b_1(Y) > 0$ means $\pi_1(Y)$ admits a surjection onto an infinite cyclic group \mathbb{Z} , signifying a free \mathbb{Z} -summand in its abelianization.

On the other hand, the finite-sheeted covering $p\colon X\to Y$ implies that

$$\pi_1(X) \subset \pi_1(Y)$$

is a finite-index subgroup. Suppose, for the sake of contradiction, that this entire subgroup $\pi_1(X)$ were contained in the kernel of φ , i.e.,

$$\pi_1(X) \subseteq \ker(\varphi).$$

Since φ is surjective onto \mathbb{Z} (an infinite group), its kernel ker(φ) must have infinite index in $\pi_1(Y)$. But $\pi_1(X)$ is a *finite*-index subgroup of $\pi_1(Y)$. A finite-index subgroup cannot be contained entirely in an infinite-index subgroup. This is the key contradiction.

Hence $\pi_1(X)$ must not lie in ker(φ); therefore,

$$\varphi|_{\pi_1(X)}: \pi_1(X) \longrightarrow \mathbb{Z}$$

is a nontrivial homomorphism. Nontriviality means $\pi_1(X)$ also surjects (perhaps onto a subgroup of \mathbb{Z} , but still infinite), which yields a free \mathbb{Z} -summand in its abelianization. Consequently,

$$b_1(X) = \dim_{\mathbf{Q}} \left(\pi_1(X)_{\mathrm{ab}} \otimes \mathbf{Q} \right) > 0.$$

Thus, X inherits a nonzero first Betti number from Y. This proves the statement.