POW 2025-09: abc-functions

20230660 정서윤

Problem. For given $a, b \in R$ and $c \in Z$, find all function $f: R \to R$ which is continuous at 0 and satisfies

$$f(ax) = f(bx) + x^c, \quad \forall x \in \mathbb{R} \setminus \{0\}$$

Solution.

If a = b, then $f(ax) = f(ax) + x^c$, $x^c \equiv 0$, which is contradiction. $\therefore a \neq b$.

If $c \le 0$, then $\lim_{x \to 0} (f(ax) - f(bx)) = 0 = \lim_{x \to 0} x^c$, which is contradiction. $\therefore c > 0$.

Case1) |a| < |b|

It' easy to show that the $\frac{x^c}{a^c-b^c}$ satisfies all conditions.

Let f(x) be a function satisfying all conditions. Define $g(x) = f(x) - \frac{x^c}{a^c - b^c}$.

Then, we have g(ax) = g(bx) and g(x) is continuous at 0.

If a = 0, then g(bx) = g(0), so g(x) = g(0).

Now, we may assume $a \neq 0$. Then, $b \neq 0$ and we have $g(x) = g\left(\frac{a}{b}x\right) = g\left(\frac{a^2}{b^2}x\right) = \cdots = g\left(\frac{a^n}{b^n}x\right)$ for all $n \in \mathbb{N}$ and for all $x \neq 0$.

Hence, $g(x) = \lim_{n \to \infty} g(\frac{a^n}{b^n}x) = g(0)$ for all $x \neq 0$ since g(x) is continuous at 0.

Therefore, g(x) = C for any constant C. Thus, $f(x) = \frac{x^c}{a^c - b^c} + C$ for any constant C.

Conversely, it satisfies all conditions.

Case2) |a| > |b|

Similarly, we can show that $f(x) = \frac{x^c}{a^c - b^c} + C$ for any constant C.

Case3)
$$|a| = |b|$$
 i.e., $a = -b$

 $f(ax) = f(-ax) + x^c$, so $f(-ax) = f(ax) + (-x)^c$. Hence, $x^c + (-x)^c = 0$, so c is odd. Then, $\frac{x^c}{a^c - b^c}$ is well-defined and satisfies all conditions.

Let f(x) be a function satisfying all conditions. Define $g(x) = f(x) - \frac{x^c}{a^c - b^c}$.

Then, we have g(ax) = g(-ax) for all $x \ne 0$, so g(x) = g(-x). Hence, g(x) is even and continuous at 0. Conversely, $f(x) = \frac{x^c}{a^c - b^c} + g(x)$ satisfies all conditions for any

even function g(x) which is continuous at 0.

To sum up, we have $a \neq b$, c > 0 and all possible functions are

$$f(x) = \begin{cases} \frac{x^c}{a^c - b^c} + C & \text{if } |\boldsymbol{a}| \neq |\boldsymbol{b}| \\ \frac{x^c}{a^c - b^c} + g(x) & \text{if } |\boldsymbol{a}| = |\boldsymbol{b}| \text{ and } c \text{ is odd} \end{cases}$$

for any constant C and for any even function g(x) which is continuous at 0.