POW 2025-03: Distinct sums under shifts

수리과학과 석박통합과정 김준홍

Theorem) (Erdős - Szekeres theorem) Let $r, s \ge 1$ be any integer, and $\{a_i\}$ be sequence of real numbers of length (r-1)(s-1)+1. Then $\{a_i\}$ contains nondecreasing subsequence of length r or nonincreasing subsequence of length s.

Proof) Let x_i be the length of the longest nondecreasing subsequence ending with a_i , and y_i be the length of the longest nonincreasing subsequence ending with a_i .

Then every pair (x_i, y_i) are distinct: Let i < j. If $a_i \le a_j$, then $x_i < x_j$ (just add a_j to the end of nondecreasing subsequence of length x_i ends with a_i). Similarly, if $a_i \ge a_j$, then $y_i < y_j$. Number of possible pair (x_i, y_i) with $1 \le x_i \le r - 1, 1 \le y_i \le s - 1$ is (r - 1)(s - 1), so there exists some (x_i, y_i) with $x_i \ge r$ or $y_i \ge s$. This proves the theorem.

Note) Assume $1 < i_1 < \cdots < i_k < n$.

If a_{i_1}, \dots, a_{i_k} is nondecreasing subsequence, then $a_1 + a_{i_1} + (i_1 - 1), \dots, a_1 + a_{i_k} + (i_k - 1)$ is increasing. (If x < y, then $a_1 + a_{i_x} + (i_x - 1) \le a_1 + a_{i_y} + (i_x - 1) < a_1 + a_{i_y} + (i_y - 1)$) Also, if a_{i_1}, \dots, a_{i_k} is nonincreasing subsequence, then $a_{i_1} + a_n + (n - i_1), \dots, a_{i_k} + a_n + (n - i_k)$ is decreasing. (If x < y, then $a_{i_x} + a_n + (n - i_x) \ge a_{i_y} + a_n + (n - i_x) > a_{i_y} + a_n + (n - i_y)$)

Let $b = \left\lceil \frac{1}{2} n^{1/3} \right\rceil$.

Claim 1) Sequence of length m + 1 has monotone subsequence of length b.

Proof) By theorem, sequence of length $(b-1)^2 + 1$ has monotone subsequence of length b. Now it is sufficient to prove $m+1 \ge (b-1)^2 + 1$.

As
$$\lceil x \rceil < x+1$$
, $(b-1)^2 + 1 < \left(\frac{1}{2}n^{1/3}\right)^2 + 1 = \frac{1}{4}n^{2/3} + 1$ holds.
As $(b-1)^2 + 1$ is integer, $(b-1)^2 + 1 \le \left|\frac{1}{4}n^{2/3} + 1\right| = m+1$.

Claim 2) Statement holds if $1 + \left(\frac{1}{4}n^{2/3} + 1\right)(2n^{1/3} + 1) \le n$.

Proof) Note that $m + 1 \le \frac{1}{4}n^{2/3} + 1$ and $4b - 3 < 4 \cdot \left(\frac{1}{2}n^{1/3} + 1\right) - 3 = 2n^{1/3} + 1$, so $2 + (m+1)(4b-3) < 2 + \left(\frac{1}{4}n^{2/3} + 1\right)(2n^{1/3} + 1) \le n + 1$. As 2 + (m+1)(4b-3) < n + 1 and 2 + (m+1)(4b-3), n + 1 are integers, $2 + (m+1)(4b-3) \le n$ holds. Consider $a_1, \dots, a_{2+(m+1)(4b-3)}$, and split it into subsequences of length $1, m + 1, \dots, m + 1, 1$, i.e. $a_1/a_2, \dots, a_{m+2}/a_3, \dots, a_{m+3}/\dots/a_{2+(m+1)(4b-4)}, \dots, a_{2+(m+1)(4b-3)-1}/a_{2+(m+1)(4b-3)}$.

Then for each subsequence of length m + 1, there exists monotone subsequence of length b, by Claim 1. Let $\{b_{x,j}\}$ be *j*th element in *x*th subsequence of length m + 1.

Considering $\{b_{x,j}\}$ with x odd, there are total 2b - 1 monotone subsequences of length b. By pigeonhole principle, there exists at least b nondecreasing subsequences or at least b nonincreasing subsequences.

Case 1) Assume there are *b* nondecreasing subsequences. Let $\{a_{i_k}\}$ be union of all such subsequences. Then $a_1 + a_{i_1} + (i_1 - 1), \dots, a_1 + a_{i_k} + (i_k - 1)$ is increasing:

By **Note**, it is true within each subsequences.

So it is enough to prove between distinct subsequences.

Assume x < y with x, y odd. Note that $b_{x,j_1} = a_{1+(m+1)(x-1)+j_1}$ and $b_{y,j_2} = a_{1+(m+1)(y-1)+j_2}$. Then $a_{1+(m+1)(x-1)+j_1} - a_{1+(m+1)(y-1)+j_2} \le m$ and $(1 + (m+1)(x-1) + j_2) - (1 + (m+1)(y-1) + j_2)$ $= ((m+1)(y-1) + j_2) - ((m+1)(x-1) + j_1) \ge 2(m+1) + j_2 - j_1 > m + 1,$ so $a_1 + a_{1+(m+1)(x-1)+j_1} + (1 + (m+1)(x-1) + j_1 - 1)$ $< a_1 + a_{1+(m+1)(y-1)+j_2} + (1 + (m+1)(y-1) + j_2 - 1).$ As $\{a_{i_k}\}$ has length $\ge b^2 = \left\lceil \frac{1}{2}n^{1/3} \right\rceil^2 \ge \frac{1}{4}n^{2/3} \ge m$, statement holds. **Case 2**) Assume there are *b* nonincreasing subsequences. Let $\{a_{i_k}\}$ be union of all such subsequences. Then $a_{i_1} + a_{2+(m+1)(4b-3)} + (2 + (m+1)(4b-3) - i_1), \cdots$,

 $a_{i_k} + a_{2+(m+1)(4b-3)} + (2 + (m+1)(4b-3) - i_k)$ is decreasing: We can prove similarly with Case 1.

Claim 3) Statement holds for all $n \ge 1$.

If m = 1, then statement is trivial. So assume $m \ge 2$, $\frac{1}{4}n^{2/3} \ge 2$, $n^{1/3} \ge 2\sqrt{2}$.

 $1 + \left(\frac{1}{4}n^{2/3} + 1\right)(2n^{1/3} + 1) \le n \text{ gives } 2n - n^{2/3} - 8n^{1/3} - 8 \ge 0.$ Consider function $f(x) = 2x^3 - x^2 - 8x - 8$. Then $f(2\sqrt{2}) = 16\sqrt{2} - 16 > 0$ and $f'(x) = 6x^2 - 2x - 8 = 6(x + 1)(x - 4/3) > 0 \text{ for } x \ge 2\sqrt{2}, \text{ so } f(x) > 0 \text{ for } x \ge 2\sqrt{2}.$ Put $x = n^{1/3}$, then we get desired result.