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1 Problem Statement

Let P be a regular 2n-gon. A perfect matching consists of n chords connecting the 2n vertices in pairs.
Let X be the random number of intersection points formed by these chords when the perfect matching
is chosen uniformly at random. We seek to determine

Remark 1. If more than two chords intersect at the same point, this intersection point is counted
only once. We denote by Xi,ye the number of distinct geometric intersection points.

2 Analysis of Pairwise Intersections

We begin by calculating the expected number of pairs of intersecting chords, denoted Xpairs.

Lemma 1. Consider any two chords in a given perfect matching connecting four distinct vertices. The
probability that these two chords intersect is %

Proof. Let the four vertices be vy, v2,v3,v4 in clockwise order around the polygon. There are three
ways to form two chords using these four vertices:

(1) (v1,v2) and (v3,v4): These chords do not intersect.
(2) (v1,v4) and (vg,v3): These chords do not intersect.
(3) (v1,v3) and (vg,v4): These chords intersect.

Since the perfect matching is chosen uniformly at random, each of these three patterns is equally likely
for any specific set of 4 vertices that are endpoints of two chords in the matching. |

Proposition 1. The expected number of pairs of intersecting chords is

n(nfl).

]E[Xpairs] = 6

Proof. A perfect matching has n chords, giving (g) pairs of chords. Let I;; be an indicator random
variable that equals 1 if chords ¢ and j intersect, and 0 otherwise. Then

Xpairs = Iz]

1<i<j<n
By linearity of expectation and Lemma 1:

E[Xpais] = Y E[l] = <’;)

1<i<j<n



3 Alternative Calculation via Vertex Quadruplets

We can verify this result by considering quadruplets of vertices directly.

Lemma 2. The probability that a specific quadruplet of vertices forms an intersection in a random
perfect matching is

(2n —5)!! 1

2n-DI'  2n—-1)(2n—3)°

Proof. Any intersection point is defined by 4 vertices vy, v, v3, v4 in cyclic order, where the intersecting
chords are (v1,v3) and (ve, v4).
The total number of perfect matchings on 2k vertices is My, = (2k — 1)l = (2k —1)(2k — 3) --- 1.
For the specific quadruplet to form an intersection, we need chords (v1, v3) and (v2,v4) to be present,
with the remaining 2n — 4 vertices forming a perfect matching among themselves. The number of such
matchings is Ma,_4 = (2n — 5)!L.

Therefore, the probability is M&i;l“‘ = gz:?;:: [ |

Proposition 2. Using the quadruplet approach:
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4 From Pairwise Intersections to Distinct Points

Now we address the relationship between Xp,irs and Xirye.
If kp chords intersect at a single geometric point P, these chords form (kQP ) pairwise intersections.
Such a point P contributes 1 to Xi,ue but (kQP) t0 Xpairs-

We have:
kp
X ... =
=Y <2> (1)
P distinct intersection point
Xtruc == Z 1 (5)
P distinct intersection point
kp>2
Therefore:
k
E[Xpairs} - E[Xtrue} =E [Z (( 2P) — 1)]
P

This difference is non-zero only for points P where kp > 3.

Lemma 3. For a regular 2n-gon, the expected contribution from points where three or more chords
intersect is O(1).

Proof. The primary difference between E[X}.irs] and E[Xye] arises from multiple chords intersecting
at a single point. For a regular 2n-gon, any intersection of three or more chords typically occurs at
the center of the polygon, formed by diameters.



Let Np be the number of diameters in the random matching. An intersection point P contributes
1 to Xipye (if kp > 2) and (kQP) t0 Xpairs. The sum ) p ((k;) — 1) accounts for the difference.

For points P not at the center, kp < 2 (assuming general position for non-diametral chords), so
(kp) — 1 = 0. Thus, the main correction term comes from the center O:

2
((3)-x)
2
where X, =1 if Np > 2 and 0 otherwise.
We need to show that E [(N;’)] and E[X ] = P(Np > 2) are O(1).
The number of possible diameters is n. Let d; denote the i-th diameter. The probability that &
specific diameters are in the matching is
(2n — 2k — 1!
(2n — )N

The expected number of pairs of distinct diameters (d;,d;) in the matching is:
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This quantity is E [(NQD)} As n — oo:

Np n?/2 1
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which is O(1). Since P(Np > 2) <1, it is also O(1).
More precisely, Np asymptotically follows a Poisson distribution with mean

A= lim n-P(dy € M) 9)
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where Z ~ Poisson(1/2), which equals 2~ = % =1L
And:
lim P(Np >2) = P(Z >2) (12)
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1
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Both terms are O(1). Therefore, E[Xpairs] — E[Xtue] = O(1). [ |



5 Main Result

Theorem.

Proof. From our analysis:

E[Xtrue} ==

Therefore:
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