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1 Problem Statement

Let P be a regular 2n-gon. A perfect matching consists of n chords connecting the 2n vertices in pairs.
Let X be the random number of intersection points formed by these chords when the perfect matching
is chosen uniformly at random. We seek to determine

lim
n→∞

E[X]

n2
.

Remark 1. If more than two chords intersect at the same point, this intersection point is counted
only once. We denote by Xtrue the number of distinct geometric intersection points.

2 Analysis of Pairwise Intersections

We begin by calculating the expected number of pairs of intersecting chords, denoted Xpairs.

Lemma 1. Consider any two chords in a given perfect matching connecting four distinct vertices. The
probability that these two chords intersect is 1

3 .

Proof. Let the four vertices be v1, v2, v3, v4 in clockwise order around the polygon. There are three
ways to form two chords using these four vertices:

(1) (v1, v2) and (v3, v4): These chords do not intersect.

(2) (v1, v4) and (v2, v3): These chords do not intersect.

(3) (v1, v3) and (v2, v4): These chords intersect.

Since the perfect matching is chosen uniformly at random, each of these three patterns is equally likely
for any specific set of 4 vertices that are endpoints of two chords in the matching. ■

Proposition 1. The expected number of pairs of intersecting chords is

E[Xpairs] =
n(n− 1)

6
.

Proof. A perfect matching has n chords, giving
(
n
2

)
pairs of chords. Let Iij be an indicator random

variable that equals 1 if chords i and j intersect, and 0 otherwise. Then

Xpairs =
∑

1≤i<j≤n

Iij .

By linearity of expectation and Lemma 1:

E[Xpairs] =
∑

1≤i<j≤n

E[Iij ] =
(
n

2

)
· 1
3
=

n(n− 1)

6
.

■
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3 Alternative Calculation via Vertex Quadruplets

We can verify this result by considering quadruplets of vertices directly.

Lemma 2. The probability that a specific quadruplet of vertices forms an intersection in a random
perfect matching is

(2n− 5)!!

(2n− 1)!!
=

1

(2n− 1)(2n− 3)
.

Proof. Any intersection point is defined by 4 vertices v1, v2, v3, v4 in cyclic order, where the intersecting
chords are (v1, v3) and (v2, v4).

The total number of perfect matchings on 2k vertices is M2k = (2k − 1)!! = (2k − 1)(2k − 3) · · · 1.
For the specific quadruplet to form an intersection, we need chords (v1, v3) and (v2, v4) to be present,

with the remaining 2n−4 vertices forming a perfect matching among themselves. The number of such
matchings is M2n−4 = (2n− 5)!!.

Therefore, the probability is M2n−4

M2n
= (2n−5)!!

(2n−1)!! . ■

Proposition 2. Using the quadruplet approach:

E[Xpairs] =

(
2n

4

)
· 1

(2n− 1)(2n− 3)
=

n(n− 1)

6
.

Proof.

E[Xpairs] =

(
2n

4

)
· 1

(2n− 1)(2n− 3)
(1)

=
2n(2n− 1)(2n− 2)(2n− 3)

24
· 1

(2n− 1)(2n− 3)
(2)

=
2n(2n− 2)

24
=

4n(n− 1)

24
=

n(n− 1)

6
. (3)

■

4 From Pairwise Intersections to Distinct Points

Now we address the relationship between Xpairs and Xtrue.

If kP chords intersect at a single geometric point P , these chords form
(
kP

2

)
pairwise intersections.

Such a point P contributes 1 to Xtrue but
(
kP

2

)
to Xpairs.

We have:

Xpairs =
∑

P distinct intersection point

(
kP
2

)
(4)

Xtrue =
∑

P distinct intersection point
kP≥2

1 (5)

Therefore:

E[Xpairs]− E[Xtrue] = E

[∑
P

((
kP
2

)
− 1

)]
This difference is non-zero only for points P where kP ≥ 3.

Lemma 3. For a regular 2n-gon, the expected contribution from points where three or more chords
intersect is O(1).

Proof. The primary difference between E[Xpairs] and E[Xtrue] arises from multiple chords intersecting
at a single point. For a regular 2n-gon, any intersection of three or more chords typically occurs at
the center of the polygon, formed by diameters.
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Let ND be the number of diameters in the random matching. An intersection point P contributes

1 to Xtrue (if kP ≥ 2) and
(
kP

2

)
to Xpairs. The sum

∑
P

((
kP

2

)
− 1

)
accounts for the difference.

For points P not at the center, kP ≤ 2 (assuming general position for non-diametral chords), so(
kP

2

)
− 1 = 0. Thus, the main correction term comes from the center O:((

ND

2

)
−Xc

)
,

where Xc = 1 if ND ≥ 2 and 0 otherwise.

We need to show that E
[(

ND

2

)]
and E[Xc] = P (ND ≥ 2) are O(1).

The number of possible diameters is n. Let di denote the i-th diameter. The probability that k
specific diameters are in the matching is

(2n− 2k − 1)!!

(2n− 1)!!
.

The expected number of pairs of distinct diameters (di, dj) in the matching is:

E

∑
i ̸=j

1di∈M,dj∈M

 =

(
n

2

)
P (d1 ∈ M,d2 ∈ M) (6)

=

(
n

2

)
(2n− 5)!!

(2n− 1)!!
(7)

=
n(n− 1)

2

1

(2n− 1)(2n− 3)
. (8)

This quantity is E
[(

ND

2

)]
. As n → ∞:

E
[(

ND

2

)]
∼ n2/2

4n2
=

1

8
,

which is O(1). Since P (ND ≥ 2) ≤ 1, it is also O(1).
More precisely, ND asymptotically follows a Poisson distribution with mean

λ = lim
n→∞

n · P (d1 ∈ M) (9)

= lim
n→∞

n
(2n− 3)!!

(2n− 1)!!
(10)

= lim
n→∞

n

2n− 1
=

1

2
. (11)

Thus:

lim
n→∞

E
[(

ND

2

)]
= E

[(
Z

2

)]
where Z ∼ Poisson(1/2), which equals λ2

2 = (1/2)2

2 = 1
8 .

And:

lim
n→∞

P (ND ≥ 2) = P (Z ≥ 2) (12)

= 1− e−1/2 − 1

2
e−1/2 (13)

= 1− 3

2
e−1/2. (14)

Both terms are O(1). Therefore, E[Xpairs]− E[Xtrue] = O(1). ■
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5 Main Result

Theorem.

lim
n→∞

E[X]

n2
=

1

6
.

Proof. From our analysis:

E[Xtrue] = E[Xpairs]−O(1) =
n(n− 1)

6
−O(1) =

n2

6
− n

6
−O(1).

Therefore:

lim
n→∞

E[X]

n2
= lim

n→∞

n2

6 − n
6 −O(1)

n2
(15)

= lim
n→∞

(
1

6
− 1

6n
−O

(
1

n2

))
(16)

=
1

6
. (17)

■
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