POW 2025-08: Chordial relations

수리과학과 석박통합과정 김준홍

First, there should be little change in problem:

 $a_1 = 1$, definitely (adding no chords to triangle). For convenience, let $a_0 = 1$.

Suppose $n \geq 2$. Label points by P_1, \dots, P_{n+2} , by clockwise. Divide to two cases,

(1) P_1 is not connected to any other points

Then it is same with adding chords in (n + 1)-gon with points except P_1 .

But in this case, P_2 and P_{n+2} are not connected, so we can either connect two points or not.

Therefore, there are total $2a_{n-1}$ cases in here.

(2) P_1 is connected to some other points

Let $3 \le k \le n+1$ be the smallest index that P_k is connected with P_1 .

- If k = 3, then it is same with adding chords in (n + 1)-gon with points except P₂.
 So there are a_{n-1} cases in here.
- If 4 ≤ k ≤ n + 1, then chord P₁P_k divides polygon into k-gon and (n + 4 k)-gon. (As P₁P_k is added, which is counted twice, so sum of sides of two polygons is n + 4) For (n + 4 - k)-gon, there is no restriction, so there are a_{n+2-k} cases. For k-gon, P₁ should not be connected with P₂, ..., P_{k-1}.

Then it is same with (1), so there are $2a_{(k-2)-1} = 2a_{k-3}$ cases.

Therefore, there are $2a_{k-3}a_{n+2-k}$ total cases.

Adding all cases give $a_n = 2a_{n-1} + a_{n-1} + \sum_{k=4}^{n+1} 2a_{k-3}a_{n+2-k}$. Putting $\sum_{k=4}^{n+1} 2a_{k-3}a_{n+2-k} = \sum_{k=1}^{n-2} 2a_ka_{n-1-k} = -4a_{n-1} + \sum_{k=0}^{n-1} 2a_ka_{n-1-k}$, then we get $a_n = -a_{n-1} + \sum_{k=0}^{n-1} 2a_ka_{n-1-k}$. Note that this also holds for n = 1, recurrence relation of a_n is

$$a_0 = 1, \quad a_{n+1} = -a_n + \sum_{k=0}^n 2a_k a_{n-k} \quad (n \ge 0)$$

Now find generating function $f(x) = \sum_{n=0}^{\infty} a_n x^n$. As $\{f(x)\}^2 = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n a_k a_{n-k}\right) x^n$, we get the equation $f(x) = -xf(x) + 2x\{f(x)\}^2 + 1$, $2x\{f(x)\}^2 - (x+1)f(x) + 1 = 0$. Solve for f(x), then we get $f(x) = \frac{(x+1) \pm \sqrt{(x+1)^2 - 8x}}{4x} = \frac{2}{(x+1) \pm \sqrt{(x+1)^2 - 8x}}$.

Considering $1 = a_0 = \lim_{x \to 0} f(x)$, only + is possible in second form (i.e. only - is possible in first form). Therefore, generating function is

$$f(x) = \frac{(x+1) - \sqrt{x^2 - 6x + 1}}{4x}.$$