# Solution: 2019-09 Discrete entropy

Suppose that $$X$$ is a discrete random variable on the set $$\{ a_1, a_2, \dots \}$$ with $$P(X=a_i) = p_i$$. Define the discrete entropy
$H(X) = -\sum_{n=1}^{\infty} p_i \log p_i.$
Find constants $$C_1, C_2 \geq 0$$ such that
$e^{2H(X)} \leq C_1 Var(X) + C_2$
holds for any $$X$$.

The best solution was submitted by 길현준 (2018학번). Congratulations!

Here is his solution of problem 2019-09.

Alternative solutions were submitted by 최백규 (생명과학과 2016학번, +3). Incomplete solutions were submitted by, 이정환 (수리과학과 2015학번, +2), 채지석 (수리과학과 2016학번, +2).

GD Star Rating

# Solution: 2019-08 Group action

Let $$G$$ be a group acting by isometries on a proper geodesic metric space $$X$$. Here $$X$$ being proper means that every closed bounded subset of $$X$$ is compact. Suppose this action is proper and cocompact,. Here, the action is said to be proper if for all compact subsets $$B \subset X$$, the set $\{g \in G | g(B) \cap B \neq \emptyset \}$ is finite. The quotient space $$X/G$$ is obtained from $$X$$ by identifying any two points $$x, y$$ if and only if there exists $$g \in G$$ such that $$gx = y$$, and equipped with the quotient topology. Then the action of $$G$$ on $$X$$ is said to be cocompact if $$X/G$$ is compact. Under these assumptions, show that $$G$$ is finitely generated.

The best solution was submitted by 이정환 (수리과학과 2015학번). Congratulations!

Here is his solution of problem 2019-08.

Alternative solutions were submitted by 조재형 (수리과학과 2016학번, +3), 채지석 (수리과학과 2016학번, +3), 김태균 (수리과학과 2016학번, +2).

GD Star Rating

# Solution: 2019-07 An inequality

Suppose that $$f: \mathbb{R} \to \mathbb{R}$$ is differentiable and $$\max_{ x \in \mathbb{R}} |f(x)| = M < \infty$$. Prove that $\int_{-\infty}^{\infty} (|f'|^2 + |f|^2) \geq 2M^2.$

The best solution was submitted by 채지석 (수리과학과 2016학번). Congratulations!

Here is his solution of problem 2019-07.

Other solutions were submitted by 고성훈 (2018학번, +3), 길현준 (2018학번, +3), 김기택 (수리과학과 2015학번, +3), 김민서 (2019학번, +3), 김태균 (수리과학과 2016학번, +3), 박재원 (2019학번, +3), 오윤석 (2019학번, +3), 윤영환 (한양대학교, +3), 이본우 (수리과학과 2017학번, +3), 이원용 (2019학번, +3), 이정환 (수리과학과 2015학번, +3), 정의현 (수리과학과 대학원생, +3), 최백규 (생명과학과 2016학번, +3).

GD Star Rating

# Solution: 2019-06 Simple but not too simple integration

Compute the following integral  $\int_{0}^{\pi/2} \log{ (2 \cos{x} )} dx$

The best solution was submitted by 김건우 (수리과학과 2017학번). Congratulations!

Here is his solution of problem 2019-06.

Other solutions were submitted by 강한필 (전산학부 2016학번, +3), 고성훈 (2018학번, +3), 길현준 (2018학번, +3), 김기수 (수리과학과 2018학번, +3), 김민서 (2019학번, +3), 김태균 (수리과학과 2016학번, +3), 김희주 (2015학번, +3), 서준영 (수리과학과 대학원생, +3), 이본우 (수리과학과 2017학번, +3), 이원용 (2019학번, +3), 이정환 (수리과학과 2015학번, +3), 이종서 (2019학번, +3), 조재형 (수리과학과 2016학번, +3), 채지석 (수리과학과 2016학번, +3), 최백규 (생명과학과 2016학번, +3), 홍진표 (서울대학교 재료공학부 2013학번, +3).

GD Star Rating

# Solution: 2019-05 Convergence with primes

Let $$p_n$$ be the $$n$$-th prime number, $$p_1 = 2, p_2 = 3, p_3 = 5, \dots$$. Prove that the following series converges:
$\sum_{n=1}^{\infty} \frac{1}{p_n} \prod_{k=1}^n \frac{p_k -1}{p_k}.$

The best solution was submitted by 김기현 (수리과학과 대학원생). Congratulations!

Here is his solution of problem 2019-05.

Other solutions were submitted by 강한필 (전산학부 2016학번), 고성훈 (2018학번, +3), 길현준 (2018학번, +3), 김기수 (수리과학과 2018학번), 김기현 (수리과학과 대학원생), 김태균 (수리과학과 2016학번), 박항 (전산학부 2013학번), 신원석 (서울대학교 컴퓨터공학부), 이본우 (수리과학과 2017학번, +3), 이정환 (수리과학과 2015학번, +3), 조재형 (수리과학과 2016학번, +3), 채지석 (수리과학과 2016학번), 최백규 (생명과학과 2016학번, +3), 김민서 (2019학번, +2), 윤창기 (서울대학교 화학과).

GD Star Rating

# Solution: 2019-04 Food distribution at a dinner party

Ten mathematicians sit at a round table. Each has a certain amount of food. At each full minute, every mathematician divides his share of food into two equal parts and hands it out to the two people seated closest to him in counter-clockwise direction. How will the food be distributed at the end of a long evening? Does the answer change if instead every mathematician shares his food with the two people sitting immediately next to him?

The best solution was submitted by 채지석 (수리과학과 2016학번). Congratulations!

Here is his solution of problem 2019-04.

Other solutions were submitted by 고성훈 (2018학번, +3), 길현준 (2018학번, +3), 김기수 (수리과학과 2018학번), 김기현 (수리과학과 대학원생), 김민서 (2019학번, +3), 김태균 (수리과학과 2016학번), 이본우 (수리과학과 2017학번, +3), 이원영 (2019학번), 이정환 (수리과학과 2015학번, +3), 이종서 (2019학번), 조재형 (수리과학과 2016학번, +3), 최백규 (생명과학과 2016학번, +3). Late solutions are not graded.

GD Star Rating

# Solution: 2019-03 Simple spectrum

Suppose that $$T$$ is an $$N \times N$$ matrix
$T = \begin{pmatrix} a_1 & b_1 & 0 & \cdots & 0 \\ b_1 & a_2 & b_2 & \ddots & \vdots \\ 0 & b_2 & a_3 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & b_{N-1} \\ 0 & \cdots & 0 & b_{N-1} & a_N \end{pmatrix}$
with $$b_i > 0$$ for $$i =1, 2, \dots, N-1$$. Prove that $$T$$ has $$N$$ distinct eigenvalues.

The best solution was submitted by 채지석 (수리과학과 2016학번). Congratulations!

Here is his solution of problem 2019-03.

Other solutions were submitted by 고성훈 (2018학번, +3), 길현준 (2018학번, +3), 김기수 (수리과학과 2018학번), 김민서 (2019학번, +3), 박현영 (전기및전자공학부 2016학번, +3), 이본우 (수리과학과 2017학번, +3), 이상윤 (UCLA, +3), 이정환 (수리과학과 2015학번, +3), 조재형 (수리과학과 2016학번, +3), 최백규 (생명과학과 2016학번, +3). Late solutions are not graded.

GD Star Rating

# Solution: 2019-02 Simplification of an expression with factorials

For any positive integers m and n, show that

$C_{n,m} = \frac{(mn)!}{(m!)^n n!}$ is an integer.

The best solution was submitted by 이영민 (수리과학과 대학원생). Congratulations!

Here is his solution of problem 2019-02.

Other solutions were submitted by Alfonso Alvarenga (전산학부 2015학번, +3), 고성훈 (2018학번, +3), 길현준 (2018학번, +3), 김기수 (수리과학과 2018학번), 김민서 (2019학번, +3), 김태균 (수리과학과 2016학번, +3), 박건규 (수리과학과 2015학번, +3), 박수찬 (전산학부 2017학번, +3), 박현영 (전기및전자공학부 2016학번, +3), 윤현민 (수리과학과 2018학번), 이본우 (수리과학과 2017학번, +3), 이상윤 (UCLA, +3), 이정환 (수리과학과 2015학번, +3), 이종서 (2019학번, +3), 이태영 (수리과학과 졸업생, +3), 조재형 (수리과학과 2016학번, +3), 조정휘 (건국대학교 수학과 2014학번, +3), 채지석 (수리과학과 2016학번, +3), 최백규 (생명과학과 2016학번, +3). Late solutions are not graded.

GD Star Rating

# Solution: 2019-01 Equilateral polygon

Suppose that $$\Pi$$ is a closed polygon in the plane. If $$\Pi$$ is equilateral $$k$$-gon, and if $$A$$ is the area of $$\Pi$$, and $$L$$ the length of its boundary, prove that
$\frac{A}{L^2} \leq \frac{1}{4k} \cot \frac{\pi}{k} \leq \frac{1}{4\pi}.$

The best solution was submitted by 윤창기 (서울대학교 화학과). Congratulations!

Here is his solution of problem 2019-01.

Similar solutions were submitted by 길현준 (2018학번, +3), 조재형 (수리과학과 2016학번, +3), 김태균 (수리과학과 2016학번, +2). Alternative solution was submitted by 고성훈 (2018학번, +3). Four incorrect solutions were received.

GD Star Rating

# Solution: 2018-23 Game of polynomials

Two players play a game with a polynomial with undetermined coefficients
$1 + c_1 x + c_2 x^2 + \dots + c_7 x^7 + x^8.$
Players, in turn, assign a real number to an undetermined coefficient until all coefficients are determined. The first player wins if the polynomial has no real zeros, and the second player wins if the polynomial has at least one real zero. Find who has the winning strategy.

The best solution was submitted by Ha, Seokmin (하석민, 수리과학과 2017학번). Congratulations!

Here is his solution of problem 2018-23.

Alternative solutions were submitted by 채지석 (수리과학과 2016학번, +3), 권홍 (중앙대 물리학과, +2).

GD Star Rating