POW 2024-21: The Realizability of Fundamental Group Homomorphisms

수리과학과 석박통합과정 김준홍

Theorem 1) By regarding loops as singular 1-cycles, we obtain a homomorphism $h : \pi_1(X, x_0) \to H_1(X)$. If X is path-connected, then h is surjective and has kernel the commutator subgroup of $\pi_1(X)$, so h induces an isomorphism from the abelianization of $\pi_1(X)$ onto $H_1(X)$. **Proof**) Allen Hatcher, Algebraic Topology, Theorem 2A.1.

Theorem 2) (Universal coefficient theorem for cohomology)

If a chain complex C of free abelian groups has homology groups $H_n(C)$, then

 $H^n(C;G) \cong \operatorname{Ext}(H_{n-1}(C),G) \oplus \operatorname{Hom}(H_n(C),G).$

Proof) Allen Hatcher, Algebraic Topology, Theorem 3.2..

Theorem 3) $H^*(\mathbb{R}P^n; \mathbb{Z}_2) \cong \mathbb{Z}_2[\alpha]/(\alpha^{n+1})$, where α is generator of $H^1(\mathbb{R}P^n; \mathbb{Z}_2)$. **Proof**) Allen Hatcher, Algebraic Topology, Theorem 3.12.

Note that for $n \geq 2$, $\pi_1(\mathbb{R}P^n) \cong \mathbb{Z}_2$ and $H_0(\mathbb{R}P^n) \cong \mathbb{Z}$.

Claim) For any continuous map $f : \mathbb{R}P^3 \to \mathbb{R}P^2$, induced homomorphism $f^* : \pi_1(\mathbb{R}P^3) \to \pi_1(\mathbb{R}P^2)$ is trivial.

Proof) Assume not. Then f^* should be isomorphism, since $\pi_1(\mathbb{R}P^n) \cong \mathbb{Z}_2$.

By theorem 1, f^* induces isomorphism $f_1: H_1(\mathbb{R}P^3) \to H_1(\mathbb{R}P^2)$.

By theorem 2, f_1 induces isomorphism $f_2: H^1(\mathbb{R}P^2; \mathbb{Z}_2) \to H^1(\mathbb{R}P^3; \mathbb{Z}_2)$.

 $(H_0(\mathbb{R}P^n) \cong \mathbb{Z}, \text{ which is free, so } \operatorname{Ext}(H_0(\mathbb{R}P^n), \mathbb{Z}_2) = 0)$

Let α and β be generator of $H^1(\mathbb{R}P^2;\mathbb{Z}_2)$ and $H^1(\mathbb{R}P^3;\mathbb{Z}_2)$, respectively.

As $H^1(\mathbb{R}P^n;\mathbb{Z}_2)\cong\mathbb{Z}_2$ for $n\geq 2$, $f_2(\alpha)=\beta$ is only possible case.

But by theorem 3, $\alpha^3 = 0$ and $\beta^3 \neq 0$. Then $0 = f_2(\alpha^3) = \beta^3 \neq 0$, so it is contradiction.

Counterexample) Let $X = \mathbb{R}P^2 \times \mathbb{R}P^3$. Then $\pi_1(X) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle a \rangle \times \langle b \rangle$.

Let $\phi : \pi_1(X) \to \pi_1(X)$ by $a \mapsto b$ and $b \mapsto a$, which is automorphism.

But there is no continuous map $X \to X$ that induces $b \mapsto a$, by claim.