POW 2025-01 INTEGER SOLUTIONS OF RECIPROCALS

JIHYEOK JEONG

Problem. Find all positive integers a, n such that

1	1					1	
	$\overline{a+1}$	+	••	•	+	$\overline{a+n}$	

is an integer.

Solution. There exists no such positive integers a, n. Suppose there exists a, n such that

$$\frac{1}{a} + \frac{1}{a+1} + \dots + \frac{1}{a+n} = k$$

for some integer k. For each $j = 0, 1, \dots, n$ define $N_j = a(a+1)\cdots(a+n)/(a+j)$. By multiplying $a(a+1)\cdots(a+n)$ on both sides we get

(1)
$$N_0 + N_1 + \dots + N_n = ka(a+1)\cdots(a+n).$$

Since any n + 1 consecutive integers form a complete system of residues modulo n + 1, there is one and only one integer $i, 0 \le i \le n$ such that $a + i \equiv 0 \pmod{n+1}$. Hence for each j, $N_j \equiv 0 \pmod{n+1}$ if $j \ne i$ and $N_j \not\equiv 0 \pmod{n+1}$ if j = i. Taking modulo n + 1 on both sides of (1) gives us a contradiction. (Note that $ka(a+1)\cdots(a+n) \equiv 0 \pmod{n+1}$.)