KAIST POW 2024-13 Concave functions (revisited)

Chanwoo Kim

27 September 2024

Problem. Let $u_n(t)$, n = 1, 2, ... be a sequence of concave functions on \mathbb{R} . Let g(t) be a differentiable function on \mathbb{R} . Assume $\liminf_{n\to\infty} u_n(t) \ge g(t)$ for every t and $\lim_{n\to\infty} u_n(0) = g(0)$. Suppose $u'_n(0)$ exist for n = 1, 2, ... Compare $\lim_{n\to\infty} u'_n(0)$ and g'(0).

Solution. Since u_n are concave on \mathbb{R} and $u'_n(0)$ exists, we have

$$u_n(t) \le u_n(0) + u'_n(0)t$$

for all $n = 1, 2, \ldots$ and $t \in \mathbb{R}$, whence

$$g(t) \le \liminf_{n \to \infty} u_n(t) \le \liminf_{n \to \infty} \left(u_n(0) + u'_n(0)t \right) = g(0) + \liminf_{n \to \infty} \left[u'_n(0)t \right]$$

It follows that

$$g(t) - g(0) - tg'(0) \le \liminf_{n \to \infty} \left[\left(u'_n(0) - g'(0) \right) t \right]$$
(1)

Divide both sides of the (1) by t and take $t \searrow 0$ and $t \nearrow 0$ give the following two inequalities.

$$\lim_{t \to 0} \frac{g(t) - g(0) - tg'(0)}{t} = 0 \le \liminf_{n \to \infty} \left[u'_n(0) - g'(0) \right]$$
$$\lim_{t \neq 0} \frac{g(t) - g(0) - tg'(0)}{t} = 0 \ge \limsup_{n \to \infty} \left[u'_n(0) - g'(0) \right]$$

Therefore $\lim_{n\to\infty} u'_n(0) = g'(0)$.