20 Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a continuous function such that the sequence $f(x)$, $f(2x)$, $f(3x), \cdots$ converges to 0 for any $x > 0$. Prove or disprove that

$$
\lim_{x \to \infty} f(x) = 0.
$$

Solution. The proposition is a famous application of the Baire category theorem, which we will take for granted.

Definition. A space X is said to be a **Baire space** if the following condition holds: Given any countable collection $\{A_n\}$ of closed sets of X each of which has empty interior in X, their union $\bigcup A_n$ also has empty interior in X.

Theorem (Baire category theorem). Every locally compact Hausdorff space is a Baire space.

Since $f(x)$ is continuous, so is $f_n(x) := f(nx)$ for all $n \in \mathbb{N}$. Let $\epsilon > 0$ be given and define

$$
E_N = \{x \mid n \ge N \implies |f_n(x)| \le \epsilon\} = \bigcap_{n \ge N} f_n^{-1}([-\epsilon, \epsilon])
$$

for each $N \in \mathbb{N}$. Note that each E_N is closed by continuity of f_n . Since $\lim_{n\to\infty} f_n(x) = 0$ for all $x > 0$, we can write $\mathbb{R}^+ = \bigcup_{N=1}^{\infty} E_N$.

Because \mathbb{R}^+ is a Baire space by the theorem, should each E_N have empty interior, so does \mathbb{R}^+ , which is not the case. Hence, some E_{N_0} must contain an open interval, say (a, b) . Thus,

$$
n \ge N_0 \implies f_n((a, b)) = f((na, nb)) \subset [-\epsilon, \epsilon].
$$

Take a sufficiently large integer $M > \max\{N_0, a/(b - a)\}\$ such that $n \geq M \implies n(b - a) >$ $na \implies (n+1)a < nb$. Finally, we have

$$
x \in \bigcup_{n \ge M} (na, nb) = (Ma, \infty) \implies |f(x)| \le \epsilon.
$$

Therefore, we conclude that $\lim_{x \to \infty} f(x) = 0$.

 \Box