Tag Archives: 박민재

Solution: 2012-6 Matrix modulo p

Let p be a prime number and let n be a positive integer. Let \(A=\left( \binom{i+j-2}{i-1}\right)_{1\le i\le p^n, 1\le j\le p^n} \) be a \(p^n \times p^n\) matrix. Prove that \( A^3 \equiv I \pmod p\), where I is the \(p^n \times p^n\) identity matrix.

The best solution was submitted by Minjae Park (박민재), 2011학번. Congratulations!

Here is his Solution of Problem 2012-6.

Alternative solutions were submitted by 서기원 (수리과학과 2009학번, +3), 이명재 (2012학번, +2).

GD Star Rating
loading...

Solution: 2012-4 Sum of squares

Find the smallest and the second smallest odd integers n satisfying the following property: \[ n=x_1^2+y_1^2 \text{ and } n^2=x_2^2+y_2^2 \] for some positive integers \(x_1,y_1,x_2,y_2\) such that \(x_1-y_1=x_2-y_2\).

The best solution was submitted by Minjae Park (박민재), 2011학번. Congratulations!

Here is his Solution of Problem 2012-4.

Alternative solutions were submitted by 조준영 (2012학번, +3), 서기원 (수리과학과 2009학번, +3), 임창준 (2012학번, +3), 홍승한 (2012학번, +2), 이명재 (2012학번, +2), 김현수 (?, +3), 천용 (전남대, +2). One incorrect solution was received.

GD Star Rating
loading...

Solution: 2012-1 ArcTan

Compute tan-1(1) -tan-1(1/3) + tan-1(1/5) – tan-1(1/7) + … .

The best solution was submitted by Minjae Park (박민재), 2011학번. Congratulations!

Here is his Solution of Problem 2012-1.

Alternative solutions were submitted by 서기원 (수리과학과 2009학번, +3), 조준영 (2012학번, +3), 조위지 (Stanford Univ. 물리학과 박사과정, +3, Solution), 박훈민 (대전과학고 1학년, +3), 이명재 (2012학번, +2), 장성우 (2010학번, +2).

GD Star Rating
loading...

Concluding 2011 Fall

Thanks all for participating POW actively. Here’s the list of winners:

1st prize: Jang, Kyoungseok (장경석) – 2011학번

2nd prize: Suh, Gee Won (서기원) – 수리과학과 2009학번

3rd prize: Kim, Bumsu (김범수) – 수리과학과 2010학번

4th prize: Park, Seungkyun (박승균) – 수리과학과 2008학번

5th prize: Park, Minjae (박민재) – 2011학번

Congratulations! As announced earlier, we have nicer prize this semester – iPad 16GB for the 1st prize, iPod Touch 32GB for the 2nd prize, etc.

장경석 (2011학번) 28 pts
서기원 (2009학번) 27 pts
김범수 (2010학번) 22 pts
박승균 (2008학번) 14 pts
박민재 (2011학번) 13 pts
강동엽 (2009학번) 11 pts
김태호 (2011학번) 9 pts
김원중 (2011학번) 3 pts
곽영진 (2011학번) 3 pts
조상흠 (2010학번) 3 pts
라준현 (2008학번) 3 pts
배다슬 (2008학번) 3 pts
이재석 (2007학번) 3 pts
최민수 (2011학번) 3 pts
문상혁 (2010학번) 2 pts
박상현 (2010학번) 2 pts

GD Star Rating
loading...

Solution: 2011-13 Sum of Partial Sums

Let a1, a2, … be a sequence of non-negative real numbers less than or equal to 1. Let \(S_n=\sum_{i=1}^n a_i\) and \(T_n=\sum_{i=1}^n S_i\). Prove or disprove that \(\sum_{n=1}^\infty a_n/T_n\) converges. (Assume a1>0.)

The best solution was submitted by Minjae Park (박민재), 2011학번. Congratulations!

Here is his Solution of Problem 2011-13. (There is a minor mistake in the proof.)

Alternative solutions were submitted by 어수강 (서울대학교 대학원, +2), 백진언 (한국과학영재학교, +2).

GD Star Rating
loading...

Concluding 2011 Spring

Thanks all for participating POW actively. Here’s the list of winners:

1st prize: Park, Minjae (박민재) – 2011학번

2nd prize: Kang, Dongyub (강동엽) – 전산학과 2009학번

3rd prize: Suh, Gee Won (서기원) – 수리과학과 2009학번
3rd prize: Lee, Jaeseok (이재석) – 수리과학과 2007학번

Congratulations!

In addition to these three people, I selected one more student to receive one notebook.

Kim, Ji Won (김지원) -수리과학과 2010학번

박민재 (2011학번) 31pts
강동엽 (2009학번) 24pts
서기원 (2009학번) 16pts
이재석 (2007학번) 16pts
김지원 (2010학번) 12pts
김치헌 (2006학번) 5pts
김인환 (2010학번) 3pts
김태호 (2011학번) 3pts
양해훈 (2008학번) 3pts
이동민 (2009학번) 2pts

GD Star Rating
loading...

Solution: 2011-7 Factorial

Let f(n) be the largest integer k such that n! is divisible by \(n^k\). Prove that \[ \lim_{n\to \infty} \frac{(\log n)\cdot \max_{2\le i\le n} f(i)}{n \log\log n}=1.\]

The best solution was submitted by Minjae Park (박민재), 2011학번. Congratulations!

Here is his Solution of Problem 2011-7.

Alternative solutions were submitted by 양해훈 (수리과학과 2008학번, +3), 이재석 (수리과학과 2007학번, +2).

 

GD Star Rating
loading...

Solution: 2011-11 Skew-symmetric and symmetric matrices

Prove that for every skew-symmetric matrix A, there are symmetric matrices B and C such that A=BC-CB.

The best solution was submitted by Minjae Park (박민재), 2011학번.  Congratulations!

Here is his Solution of Problem 2011-11.

Alternative solutions were submitted by 강동엽 (전산학과 2009학번, +3), 서기원 (수리과학과 2009학번, +3), 어수강 (홍익대 수학교육과, +3, Alternative Solution of Problem 2011-11).

GD Star Rating
loading...

Solution: 2011-9 Distinct prime factors

Prove that there is a constant c>1 such that if  \(n>c^k\) for positive integers n and k, then the number of distinct prime factors of \(n \choose k\) is at least k.

The best solution was submitted by Minjae Park (박민재), KAIST 2011학번. Congratulations!

Here is his Solution of Problem 2011-9.

An alternative solution was submitted by 어수강 (홍익대 수학교육과 2004학번, +3).

GD Star Rating
loading...