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POW2011-7. Let f(n) be the largest integer k such that n! is divisible by n*.
Prove that
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so the following is derived from the previous inequalities.
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Note that n = H;n:l p;% > 2™, so logm <loglogn + O(1). Therefore,
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Let s be the number satisfying (s + 1)! < n < (s + 2)!. By Stirling’s ap-

proximation, s! ~ 1/2ms (i)s, SO § ~ % where W (n) is the Lambert W
logn
loglogn*
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function. Since W(n) ~ logn, we have s ~ Let g be the largest prime

Let v,(n) be the number satisfying pvr () || n for a prime p. Then,
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holds for any prime p, i.e. (s!)/* | t!. For the exponents of ¢, we have
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Therefore,
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