Factorial

Minjae Park

POW2011-7. Let $f(n)$ be the largest integer k such that $n!$ is divisible by n^{k}.
Prove that

$$
\lim _{n \rightarrow \infty} \frac{\log n \max _{2 \leq i \leq n} f(i)}{n \log \log n}=1
$$

Solution. Let $n=\prod_{j=1}^{m} p_{j}{ }^{e_{j}}$ be the prime factorization. Since $n^{f(n)} \mid n!$,

$$
\begin{gathered}
f(n) e_{j} \leq \sum_{i \geq 1}\left[\frac{n}{p_{j}^{i}}\right]<\sum_{i \geq 1} \frac{n}{p_{j}^{i}}=\frac{n}{p_{j}-1} \\
e_{j} \log p_{j} \leq \frac{n \log p_{j}}{f(n)\left(p_{j}-1\right)}
\end{gathered}
$$

for all j. Thus,

$$
\log n=\sum_{j=1}^{m} e_{j} \log p_{j} \leq \frac{n}{f(n)} \sum_{j=1}^{m} \frac{\log p_{j}}{p_{j}-1}
$$

holds. Let $q_{1}<q_{2}<\cdots$ be all prime numbers. Then, $\frac{\log p_{j}}{p_{j}-1}<\frac{\log q_{j}}{q_{j}-1}$ because $\frac{\log p}{p-1}$ is decreasing. By the prime number theorem and Mertens' theorem, we obtain

$$
\begin{aligned}
\sum_{j=1}^{m} \frac{\log p_{j}}{p_{j}-1} & \leq \sum_{j=1}^{m} \frac{\log q_{j}}{q_{j}-1}=\sum_{\substack{p \leq q_{m} \\
p ; p r i m e}} \frac{\log p}{p-1} \\
& \leq \log (m \log (m \log m))+O(1)=\log m(1+o(1))
\end{aligned}
$$

so the following is derived from the previous inequalities.

$$
f(n) \leq \frac{n \log m}{\log n}(1+o(1))
$$

Note that $n=\prod_{j=1}^{m} p_{j}{ }^{e_{j}} \geq 2^{m}$, so $\log m \leq \log \log n+O(1)$. Therefore,

$$
\begin{equation*}
f(n) \leq \frac{n \log \log n}{\log n}(1+o(1)) \tag{1}
\end{equation*}
$$

Let s be the number satisfying $(s+1)$! $\leq n<(s+2)$!. By Stirling's approximation, $s!\sim \sqrt{2 \pi s}\left(\frac{s}{e}\right)^{s}$, so $s \sim \frac{\log n}{W(\log n)}$ where $W(n)$ is the Lambert W function. Since $W(n) \sim \log n$, we have $s \sim \frac{\log n}{\log \log n}$. Let q be the largest prime with $q \leq \sqrt[3]{\frac{n}{s!}}$. Let $t=q^{3} s!\leq n$. Note that $q \sim \sqrt[3]{\frac{n}{s!}}$ because $\frac{n}{s!} \geq s+1 \rightarrow \infty$ as $n \rightarrow \infty$, so $t \sim n$.

Let $v_{p}(n)$ be the number satisfying $p^{v_{p}(n)} \| n$ for a prime p. Then,

$$
v_{p}(t!)=\sum_{i \geq 1}\left[\frac{t}{p^{i}}\right] \geq \frac{t}{s} \sum_{i \geq 1}\left[\frac{s}{p^{i}}\right]=\frac{t}{s} v_{p}(s!)
$$

holds for any prime p, i.e. $(s!)^{t / s} \mid t$. For the exponents of q, we have

$$
\begin{gathered}
v_{q}(t)=v_{q}\left(q^{3} s!\right)=3+\sum_{i \geq 1}\left[\frac{s}{q^{i}}\right]<3+\frac{s}{q-1} \\
v_{q}(t!)=\sum_{i \geq 1}\left[\frac{t}{q^{i}}\right] \geq\left[\frac{t}{q}\right]>\frac{t}{q}-1
\end{gathered}
$$

Therefore,

$$
f(t) \geq \min \left\{\frac{t}{s}, \frac{v_{q}(t!)}{v_{q}(t)}\right\} \geq \min \left\{\frac{t}{s}, \frac{\frac{t}{q}-1}{\frac{s}{q-1}+3}\right\} \sim \frac{t}{s}
$$

since $q \leq \sqrt[3]{\frac{n}{s!}}<\sqrt[3]{\frac{(s+2)!}{s!}}=\sqrt[3]{(s+1)(s+2)}=o(s)$. Consequently,

$$
\begin{align*}
\max _{2 \leq i \leq n} f(i) \geq f(t) \geq(1+o(1)) \frac{t}{s} & =(1+o(1)) \frac{n}{\frac{\log n}{\log \log n}} \\
& =(1+o(1)) \frac{n \log \log n}{\log n} \tag{2}
\end{align*}
$$

and $\max _{2 \leq i \leq n} f(i) \sim \frac{n \log \log n}{\log n}$ from (1) and (2), so

$$
\lim _{n \rightarrow \infty} \frac{\log n \max _{2 \leq i \leq n} f(i)}{n \log \log n}=1
$$

