Skew-symmetric and symmetric matrices

Minjae Park

POW2011-11. Prove that for every skew-symmetric matrix A, there are symmetric matrices B and C such that $A=B C-C B$.

Solution.

Theorem 1. Every square matrix A is a product of two symmetric matrices.
Proof. Let $A=Q^{-1} X Q$ be the rational canonical form, i.e. Q is the invertible matrix, and $X=\operatorname{diag}\left(A_{1}, A_{2}, \cdots, A_{m}\right)$, where each A_{i} has a form

$$
\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & a_{1} \\
1 & 0 & \cdots & 0 & a_{2} \\
0 & 1 & \cdots & 0 & a_{3} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & a_{n}
\end{array}\right) .
$$

If X is a product of two symmetric matrices Y and Z, then $B=Q^{-1} Y\left(Q^{T}\right)^{-1}$ and $C=Q^{T} Z Q$ are also symmetric matrices with $A=B C$. Thus, it is sufficient to prove the theorem only for A_{i}. Let

$$
C_{i}=\left(\begin{array}{cccccc}
a_{2} & a_{3} & a_{4} & \cdots & a_{n} & -1 \\
a_{3} & a_{4} & 0 & \cdots & -1 & 0 \\
a_{4} & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \\
a_{n} & -1 & 0 & \cdots & 0 & 0 \\
-1 & 0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

be a symmetric matrix, then it is invertible since $\left|C_{i}\right| \neq 0$, so C_{i}^{-1} is also symmetric. In addition, it is easy to check that $A_{i} C_{i}$ is symmetric by direct
computation. Therefore, A_{i} is a product of two symmetric matrices $A_{i} C_{i}$ and C_{i}^{-1}, which completes the proof.

For given skew-symmetric matrix A, there is a square matrix X so that $A=X-X^{T}$. For example, take a triangular part of A. By Theorem 1, there exist two symmetric matrices B and C with $X=B C$. Therefore, $A=B C-$ $(B C)^{T}=B C-C B$.

