Distinct prime factors

Minjae Park

POW2011-9. Prove that there is a constant c > 1 such that if $n > c^k$ for positive integers n and k, then the number of distinct prime factors of $\binom{n}{k}$ is at least k.

Solution. Let us write $[a,b] = \{a, a+1, \cdots, b-1, b\}$ for b > a. Let $\omega(n)$ be the number of distinct prime factors of n, and $v_p(n)$ be the number satisfying $p^{v_p(n)} \parallel n$ for a prime p. Let $\pi(n)$ be the prime counting function.

Theorem 1. If $n \ge k! + k$, then $\omega(\binom{n}{k}) \ge k$.

Proof. Let
$$n \ge k! + k$$
, and $\binom{n}{k} = \prod_{j=1}^{m} p_j^{e_j}$ be the prime factorization.

For any p_j , let $a_i = \#\{s \in [n-k+1,n] \text{ s.t. } p_j^i \mid s\}$. Let α be the largest iso that $a_i \neq 0$. Similarly, let $b_i = \#\{s \in [1,k] \text{ s.t. } p_i^i \mid s\}$. Note that #[n-k+1][1,n]=#[1,k]=k, so $a_i\leq b_i+1$ for all i. Also, $a_i=0$ for any $i>\alpha.$ Then,

$$e_{j} = v_{p_{j}}(\binom{n}{k}) = v_{p_{j}}(n(n-1)\cdots(n-k+1)) - v_{p_{j}}(k!)$$
$$= \sum_{i\geq 1} a_{i} - \sum_{i\geq 1} b_{i} = \sum_{i\geq 1} (a_{i} - b_{i}) \leq \sum_{i=1}^{\alpha} 1 = \alpha$$

hold. This implies that
$$\exists s \in [n-k+1,n]$$
 so that $p_j^{e_j} \mid s$.
Suppose that $m = \omega\left(\binom{n}{k}\right) < k$. Note that $\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} = \frac{n(n-1)\cdots(n-k+1)}{k!}$

 $\prod p_j^{e_j}$, and at most m < k terms in the numerator of the left hand side divide all terms of the right hand side. Thus, there should be $s \in [n-k+1, n]$ which divides k!. However, this is impossible because $n \ge k! + k$, so s > k!. Therefore, $\omega\left(\binom{n}{k}\right) \geq k.$ **Lemma 2.** For any $\epsilon > 0$, there exists k_0 such that if $k > k_0$ and $n > (e + \epsilon)^k$, then there is a prime p_i satisfying $p_i^{e_i} \parallel n - i$ and $p_i^{e_i} > k$ for every i with $0 \le i < k$.

Proof. Assume that there is no such prime for some n-i with $0 \le i < k$. Let $n-i = \prod_{j=1}^m p_j^{e_j}$ be the prime factorization. Since each $p_j^{e_j} \le k$, we obtain

$$n - i \le k^m \le k^{\pi(k)} = e^{\pi(k)\log(k)} = e^{(1+o(1))k}$$

by the prime number theorem. This is a contradiction for sufficiently large k, for $n > (e + \epsilon)^k$.

Theorem 3 (P. Erdös, H. Gupta, S. P. Khare, 1976). For any $\epsilon > 0$, there exists k_0 such that if $k > k_0$ and $n > (e + \epsilon)^k$, then $\omega\left(\binom{n}{k}\right) \geq k$.

Proof. Let $\epsilon > 0$ be given. By the lemma 2, there exists k_0 such that if $k > k_0$ and $n > (e + \epsilon)^k$, then there is a prime p_i satisfying $p_i^{e_i} \parallel n - i$ and $p_i^{e_i} > k$ for every i with $0 \le i < k$. Note that $p_i \mid \binom{n}{k}$ for all i with $0 \le i < k$, and $p_i \ne p_j$ if $i \ne j$ because $p_i^{e_i} > k$. Therefore, the theorem 3 is immediately obtained. \square

By the theorem 3, there exists k_0 such that if $k > k_0$ and $n > 3^k$, then $\omega\left(\binom{n}{k}\right) \geq k$. Let $c = \max\{3, k_0! + k_0\} > 1$. If $k \leq k_0$ and $n > c^k$, then $n > c^k \geq c \geq k_0! + k_0 \geq k! + k$, so $\omega\left(\binom{n}{k}\right) \geq k$ by the theorem 1. If $k > k_0$ and $n > c^k$, then $n > c^k \geq 3^k$, so $\omega\left(\binom{n}{k}\right) \geq k$. Consequently, the original problem is proved.