Distinct prime factors

Minjae Park

POW2011-9. Prove that there is a constant $c>1$ such that if $n>c^{k}$ for positive integers n and k, then the number of distinct prime factors of $\binom{n}{k}$ is at least k.

Solution. Let us write $[a, b]=\{a, a+1, \cdots, b-1, b\}$ for $b>a$. Let $\omega(n)$ be the number of distinct prime factors of n, and $v_{p}(n)$ be the number satisfying $p^{v_{p}(n)} \| n$ for a prime p. Let $\pi(n)$ be the prime counting function.

Theorem 1. If $n \geq k!+k$, then $\left.\omega\binom{n}{k}\right) \geq k$.
Proof. Let $n \geq k!+k$, and $\binom{n}{k}=\prod_{j=1}^{m} p_{j}^{e_{j}}$ be the prime factorization.
For any p_{j}, let $a_{i}=\#\left\{s \in[n-k+1, n]\right.$ s.t. $\left.p_{j}^{i} \mid s\right\}$. Let α be the largest i so that $a_{i} \neq 0$. Similarly, let $b_{i}=\#\left\{s \in[1, k]\right.$ s.t. $\left.p_{j}^{i} \mid s\right\}$. Note that $\#[n-k+$ $1, n]=\#[1, k]=k$, so $a_{i} \leq b_{i}+1$ for all i. Also, $a_{i}=0$ for any $i>\alpha$. Then,

$$
\begin{aligned}
e_{j}=v_{p_{j}}\left(\binom{n}{k}\right) & =v_{p_{j}}(n(n-1) \cdots(n-k+1))-v_{p_{j}}(k!) \\
& =\sum_{i \geq 1} a_{i}-\sum_{i \geq 1} b_{i}=\sum_{i \geq 1}\left(a_{i}-b_{i}\right) \leq \sum_{i=1}^{\alpha} 1=\alpha
\end{aligned}
$$

hold. This implies that $\exists s \in[n-k+1, n]$ so that $p_{j}^{e_{j}} \mid s$.
Suppose that $m=\omega\left(\binom{n}{k}\right)<k$. Note that $\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!}=$ $\prod_{j=1}^{m} p_{j}^{e_{j}}$, and at most $m<k$ terms in the numerator of the left hand side divide all terms of the right hand side. Thus, there should be $s \in[n-k+1, n]$ which divides k !. However, this is impossible because $n \geq k!+k$, so $s>k$!. Therefore, $\omega\left(\binom{n}{k}\right) \geq k$.

Lemma 2. For any $\epsilon>0$, there exists k_{0} such that if $k>k_{0}$ and $n>(e+\epsilon)^{k}$, then there is a prime p_{i} satisfying $p_{i}^{e_{i}} \| n-i$ and $p_{i}^{e_{i}}>k$ for every i with $0 \leq i<k$.

Proof. Assume that there is no such prime for some $n-i$ with $0 \leq i<k$. Let $n-i=\prod_{j=1}^{m} p_{j}^{e_{j}}$ be the prime factorization. Since each $p_{j}^{e_{j}} \leq k$, we obtain

$$
n-i \leq k^{m} \leq k^{\pi(k)}=e^{\pi(k) \log (k)}=e^{(1+o(1)) k}
$$

by the prime number theorem. This is a contradiction for sufficiently large k, for $n>(e+\epsilon)^{k}$.

Theorem 3 (P. Erdös, H. Gupta, S. P. Khare, 1976). For any $\epsilon>0$, there exists k_{0} such that if $k>k_{0}$ and $n>(e+\epsilon)^{k}$, then $\left.\omega\binom{n}{k}\right) \geq k$.

Proof. Let $\epsilon>0$ be given. By the lemma 2, there exists k_{0} such that if $k>k_{0}$ and $n>(e+\epsilon)^{k}$, then there is a prime p_{i} satisfying $p_{i}^{e_{i}} \| n-i$ and $p_{i}^{e_{i}}>k$ for every i with $0 \leq i<k$. Note that $p_{i} \left\lvert\,\binom{ n}{k}\right.$ for all i with $0 \leq i<k$, and $p_{i} \neq p_{j}$ if $i \neq j$ because $p_{i}^{e_{i}}>k$. Therefore, the theorem 3 is immediately obtained.

By the theorem 3, there exists k_{0} such that if $k>k_{0}$ and $n>3^{k}$, then $\omega\left(\binom{n}{k}\right) \geq k$. Let $c=\max \left\{3, k_{0}!+k_{0}\right\}>1$. If $k \leq k_{0}$ and $n>c^{k}$, then $n>c^{k} \geq c \geq k_{0}!+k_{0} \geq k!+k$, so $\omega\left(\binom{n}{k}\right) \geq k$ by the theorem 1. If $k>k_{0}$ and $n>c^{k}$, then $n>c^{k} \geq 3^{k}$, so $\omega\left(\binom{n}{k}\right) \geq k$. Consequently, the original problem is proved.

