Sum of squares

Minjae Park

POW2012-4. Find the smallest and the second smallest odd integers n satisfying the following property: $n=x_{1}^{2}+y_{1}^{2}$ and $n^{2}=x_{2}^{2}+y_{2}^{2}$ for some positive integers $x_{1}, y_{1}, x_{2}, y_{2}$ such that $x_{1}-y_{1}=x_{2}-y_{2}$.

Solution. The answer is 5 and 261. $\left(5=2^{2}+1^{2}, 5^{2}=4^{2}+3^{2}\right.$, and $261=$ $15^{2}+6^{2}, 261^{2}=189^{2}+180^{2}$.)

To verify this, suppose that $5<n<261$ satisfies the given property. Assume that $x_{i}>y_{i}$, and let $x_{1}-y_{1}=x_{2}-y_{2}=k$, then k must be odd. Since $261>n>k^{2}, k=1,3, \cdots, 15$. Note that $n^{2}=k^{2}+2 x_{2} y_{2}=k^{2}+\left(x_{2}+y_{2}\right)^{2}-n^{2}$, thus $2 n^{2}=k^{2}+p^{2}$ has an integral solution.
(a) If $k=1$, then by solving a Pell's equation $p^{2}-2 n^{2}=-1$, we obtain $p+n \sqrt{2}=(1+\sqrt{2})^{2 j-1}$ for $j=1,2,3, \cdots$, and $n=1,5,29,169,985, \cdots$. It is easy to check that 29 and 169 are not representable as $y_{1}^{2}+\left(y_{1}+1\right)^{2}$, so $k \neq 1$.

Note that $x_{2} \equiv y_{2} \bmod k$, so $n^{2} \equiv 2 x_{2}^{2} \bmod k$. Hence, if $\left(\frac{2}{k}\right) \neq 1$ then $x_{2} \equiv y_{2} \equiv n \equiv x_{1} \equiv y_{1} \equiv 0 \bmod k$.
(b) If $3 \mid k$, since $\left(\frac{2}{3}\right)=-1$, we obtain $9 \mid n$ from $n=x_{1}^{2}+y_{1}^{2}$. As $n^{2}=x_{2}^{2}+y_{2}^{2}$, $x_{2} \equiv y_{2} \equiv 0 \bmod 9$, therefore k is divisible by 9 which means that $k=9$. Since $n=x_{1}^{2}+y_{1}^{2}<261=6^{2}+15^{2}, y_{1}=3$ and $x_{1}=12$, so $n=153$. However, $2 n^{2}-k^{2}=2 \cdot 153^{2}-9^{2}=9^{2}\left(2 \cdot 17^{2}-1\right)=9^{2} \cdot 577=p^{2}$ does not have an integral solution. As a consequence, $k \neq 3,9,15$.
(c) If $k=5,11,13$, then $\left(\frac{2}{k}\right)=-1$. Since $n<261<10^{2}+15^{2}, x_{1}=10$ and $y_{1}=5$ is the only possibility if $k=5$. In this case, $n=125$, thus $2 n^{2}-k^{2}=$ $5^{2}\left(2 \cdot 5^{4}-1\right)=5^{2} \cdot 1249=p^{2}$ does not have an integral solution, so $k \neq 5$. Also, $k \neq 11,13$ because $n<261<11^{2}+22^{2}<13^{2}+26^{2}$.
(d) If $k=7, n<261<8^{2}+15^{2}$, so $y_{1}=1,2, \cdots, 8$ and all possible values are $n=65,85,109,137,169,205,245$. It is not so hard to compute $2 n^{2}-k^{2}=$ $2 n^{2}-49=p^{2}$ is never a square, therefore $k \neq 7$.

From (a) to (d), such n does not exist.

