POW 2011-11 Skew-symmetric and symmetric matrices.
홍익대학교 수학교육과 04학번, 어 수강.

Prove that for every skew-symmetric matrix A, there are symmetric matrices B and C such that $A=B C-C B$.

Solution : Let $A \in M_{n \times n}$ (any skew-symmetric matrix) be given. Let $B=\left(i \delta_{i j}\right)$.
(Then B is symmetric) We will show that there is a symmetric matrix C such that $A=B C-C B$.

STEP1 : Let's define a function $f_{B}: M_{n \times n} \rightarrow M_{n \times n}$ as $f_{B}(X)=B X-X B$ and let $C_{i, j}$ be a matrix such that $(i, j),(j, i)$ components of $C_{i, j}$ are 1 , and the other components of $C_{i, j}$ are 0 . (Then f_{B} is a linear function and C is symmetric)

Then $f_{B}\left(C_{i, j}\right)$ be a matrix such that (i, j) component of $f_{B}\left(C_{i, j}\right)$ is $i-j,(j, i)$ component of $f_{B}\left(C_{i, j}\right)$ is $-(i-j)$, and the other components of $f_{B}\left(C_{i, j}\right)$ are 0 .

STEP3: Let $C=\sum_{1 \leq i<j \leq n} \alpha_{i j} C_{i, j}$
Since f_{B} is a linear function, $f_{B}(C)=f_{B}\left(\sum_{1 \leq i<j \leq n} \alpha_{i j} G_{i, j}\right)=\sum_{1 \leq i<j \leq n} \alpha_{i j} f\left(C_{i, j}\right)=A$

Since $f_{B}(C)=B C-C B$, We are done

