Minjae's MINE

Protected: POW 2012-6 Matrix modulo p

Let p be a prime number and let n be a positive integer. Let $A=\left(\binom{i+j-2}{i-1}\right)_{1 \leq i \leq p^{n}, 1 \leq j \leq p^{n}}$ be a $p^{n} \times p^{n}$ matrix. Prove that $A^{3} \equiv I(\bmod p)$, where I is the $p^{n} \times p^{n}$ identity matrix.
Solution. Let a 2×2 matrix $M \in G L_{2}(\mathbf{Z} / p \mathbf{Z})$ be given. For $k>1$, define $M_{k} \in G L_{k}(\mathbf{Z} / p \mathbf{Z})$ to be the $k \times k$ matrix such that

$$
\left(\begin{array}{c}
x_{M}^{k-1} \\
x_{M}^{k-2} y_{M} \\
x_{M}^{k-3} y_{M}^{2} \\
\vdots \\
x_{M} y_{M}^{k-2} \\
y_{M}^{k-1}
\end{array}\right)=M_{k}\left(\begin{array}{c}
x^{k-1} \\
x^{k-2} y \\
x^{k-3} y^{2} \\
\vdots \\
x y^{k-2} \\
y^{k-1}
\end{array}\right)
$$

where $\binom{x_{M}}{y_{M}}=M\binom{x}{y}$. Then, it is trivial that $(M N)_{k}=M_{k} N_{k}$ for any $M, N \in G L_{2}(\mathbf{Z} / p \mathbf{Z})$.
Let $J=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)$ which plays the critical role in this solution. The fact that $J^{3}=-I$ will be used in the end.

Claim. If $K=p^{n}$, then $J_{K}=A_{\text {over }} \mathbf{Z} / p \mathbf{Z}$.
It is easy to see that $\left[J_{K}\right]_{i j}=\left[x^{K-j} y^{j-1}\right](x-y)^{K-i} x^{i-1}=(-1)^{j-1}\binom{K-i}{j-1}$. Hence, $\left[J_{K}\right]_{i 1}=1$ for $1 \leq i \leq K$ and

$$
\left[J_{K}\right]_{1 j}=(-1)^{j-1}\binom{K-1}{j-1} \equiv 1(\bmod p) \quad \text { for } 1 \leq j \leq K
$$

This can be verified using $(1-x)^{K} \equiv 1-x^{K}(\bmod p)$, so $(1-x)^{K-1} \equiv \sum_{j=1}^{K} x^{j-1}(\bmod p)$. Also,

$$
\left[J_{K}\right]_{i j}=\left[J_{K}\right]_{i(j-1)}+\left[J_{K}\right]_{(i-1) j}
$$

for $1<i, j \leq K$ from the formula $\binom{K-i+1}{j-1}=\binom{K-i}{j-2}+\binom{K-i}{j-1}$. On the other hand, the given matrix A also has the exactly same structure, i.e. $[A]_{i 1}=[A]_{1 j}=1_{\text {and }}[A]_{i j}=[A]_{i(j-1)}+[A]_{(i-1) j}$. This proves that $J_{K}=A$.

By the claim, $A^{3}=\left(J_{K}\right)^{3}=\left(J^{3}\right)_{K}=(-I)_{K}=I_{\text {over }} \mathbf{Z} / p \mathbf{Z}$. Therefore, $A^{3} \equiv I(\bmod p)$.

