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Problem: Compute tan−1(1)− tan−1(1/3) + tan−1(1/5)− tan−1(1/7) + . . . .

Solution:

Using the angle subtraction formula for the tangent function, given by

tan(α− β) =
tanα− tanβ

1 + tanα tanβ
,

we obtain
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Hence the series considered here can be turned into the following form:
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Now let us represent the inverse tangent function as follows:

tan−1 x = Im
[
ln(1 + ix)

]
, (2)

where we have chosen the convention for the natural logarithm
[
ln z ≡ ln |z|+ i arg(z)

]
such that

the branch cut is placed at (−∞, 0] and −π < arg(z) < π.
Then,
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To get the third equality on the above, we have used the infinite product formula for the cosine
function:
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)
.

We then have
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and therefore,
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