Constant function

Minjae Park

POW2011-23. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be a function such that for each point $a \in R^{n}, \lim _{x \rightarrow a} \frac{\|f(x)-f(a)\|}{\|x-a\|}$ exists. Prove that f is a constant function.

Solution. There are useful notations and results from Lipschitz analysis.
Definition. A function $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be Lipschitz if

$$
\|f(x)-f(y)\| \leq L\|x-y\|
$$

for every $x, y \in \Omega$ where L is a non-negative constant.
Definition. The pointwise Lipschitz constant of a function $f: \Omega \subset \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{m} is

$$
\operatorname{Lip} f(a) \equiv \limsup _{x \rightarrow a} \frac{\|f(x)-f(a)\|}{\|x-a\|}
$$

Theorem (Lebesgue). Let $f:(a, b) \rightarrow \mathbb{R}$ be Lipschitz. Then f is differentiable at almost every point in (a, b).

Theorem (Rademacher). Let $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be Lipschitz. Then f is differentiable at almost every point in Ω.

Theorem (Stepanov). A function $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable almost everywhere in the set

$$
L(f) \equiv\{a \in \Omega: \operatorname{Lip} f(a)<\infty\}
$$

Let's go back to the original problem, let $h(a) \equiv \lim _{x \rightarrow a} \frac{\|f(x)-f(a)\|}{\|x-a\|}$. Then, $\operatorname{Lip} f(a)=h(a)<\infty$ for all $a \in R^{n}$, thus f is differentiable almost everywhere by Stepanov's theorem.

Suppose that f is differentiable at a. Then, the $(n-1) \times n$ Jacobian matrix $D f(a)$ exists. Since $\operatorname{rank}(D f(a)) \leq n-1$, $\operatorname{nullity}(D f(a)) \geq 1$, so there is a non-zero $n \times 1$ column vector $b \in \operatorname{Ker}(D f(a))$.

Let $p: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a smooth curve passing the point a, which is given by $p(t)=a+b t$. Then,

$$
\begin{aligned}
h(a)^{2} & =\lim _{x \rightarrow a} \frac{\|f(x)-f(a)\|^{2}}{\|x-a\|^{2}} \\
& =\lim _{t \rightarrow 0} \frac{\|f(p(t))-f(a)\|^{2}}{\|p(t)-a\|^{2}} \\
& =\lim _{t \rightarrow 0} \frac{\sum_{k=1}^{n-1}\left(f_{k}(p(t))-f_{k}(a)\right)^{2}}{\|b\|^{2} t^{2}} \\
& =\lim _{t \rightarrow 0} \frac{\sum_{k=1}^{n-1}\left(\sum_{j=1}^{n} D_{j} f_{k} \frac{d p_{j}}{d t}\right)\left(f_{k}(p(t))-f_{k}(a)\right)}{\|b\| t} \\
& =\lim _{t \rightarrow 0} \frac{\sum_{k=1}^{n-1} D f(a)(b)_{k}\left(f_{k}(p(t))-f_{k}(a)\right)}{\|b\| t} \\
& =0
\end{aligned}
$$

by L'Hospital's rule. Therefore, $h(a)=0$ if f is differentiable at a.
Since f is differentiable almost everywhere, $h(a)=0$ almost everywhere. If $h(a)=\lim _{x \rightarrow a} \frac{\|f(x)-f(a)\|}{\|x-a\|} \neq 0$ for some a, then the measure of set $D=\{a$: $h(a) \neq 0\}$ is not zero, which is a contradiction. As a result, $h(a)=0$ for all $a \in \mathbb{R}^{n}$.

By the definition of derivative, $D f(a)$ exists and vanishes for all $a \in \mathbb{R}^{n}$ because if so,

$$
\lim _{x \rightarrow a} \frac{\|f(x)-f(a)-D f(a)(x-a)\|}{\|x-a\|}=h(a)=0
$$

and such a linear map uniquely exists. In conclusion, by the mean value theorem, f is a constant function.

