Constant function

Minjae Park

POW2011-23. Let $f : \mathbb{R}^n \to \mathbb{R}^{n-1}$ be a function such that for each point $a \in \mathbb{R}^n$, $\lim_{x\to a} \frac{\|f(x)-f(a)\|}{\|x-a\|}$ exists. Prove that f is a constant function.

Solution. There are useful notations and results from Lipschitz analysis.

Definition. A function $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ is said to be Lipschitz if

 $||f(x) - f(y)|| \le L||x - y||$

for every $x, y \in \Omega$ where L is a non-negative constant.

Definition. The pointwise Lipschitz constant of a function $f : \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ is

$$\operatorname{Lip} f(a) \equiv \limsup_{x \to a} \frac{\|f(x) - f(a)\|}{\|x - a\|}.$$

Theorem (Lebesgue). Let $f : (a, b) \to \mathbb{R}$ be Lipschitz. Then f is differentiable at almost every point in (a, b).

Theorem (Rademacher). Let $f : \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ be Lipschitz. Then f is differentiable at almost every point in Ω .

Theorem (Stepanov). A function $f : \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable almost everywhere in the set

$$L(f) \equiv \{a \in \Omega : \operatorname{Lip} f(a) < \infty\}.$$

Let's go back to the original problem, let $h(a) \equiv \lim_{x \to a} \frac{\|f(x) - f(a)\|}{\|x-a\|}$. Then, $\operatorname{Lip} f(a) = h(a) < \infty$ for all $a \in \mathbb{R}^n$, thus f is differentiable almost everywhere by Stepanov's theorem.

Suppose that f is differentiable at a. Then, the $(n-1) \times n$ Jacobian matrix Df(a) exists. Since rank $(Df(a)) \leq n-1$, nullity $(Df(a)) \geq 1$, so there is a non-zero $n \times 1$ column vector $b \in \text{Ker}(Df(a))$.

Let $p: \mathbb{R} \to \mathbb{R}^n$ be a smooth curve passing the point a, which is given by p(t) = a + bt. Then,

$$h(a)^{2} = \lim_{x \to a} \frac{\|f(x) - f(a)\|^{2}}{\|x - a\|^{2}}$$

$$= \lim_{t \to 0} \frac{\|f(p(t)) - f(a)\|^{2}}{\|p(t) - a\|^{2}}$$

$$= \lim_{t \to 0} \frac{\sum_{k=1}^{n-1} (f_{k}(p(t)) - f_{k}(a))^{2}}{\|b\|^{2}t^{2}}$$

$$= \lim_{t \to 0} \frac{\sum_{k=1}^{n-1} \left(\sum_{j=1}^{n} D_{j}f_{k} \frac{dp_{j}}{dt}\right) (f_{k}(p(t)) - f_{k}(a))}{\|b\|t}$$

$$= \lim_{t \to 0} \frac{\sum_{k=1}^{n-1} Df(a)(b)_{k}(f_{k}(p(t)) - f_{k}(a))}{\|b\|t}$$

$$= 0$$

by L'Hospital's rule. Therefore, h(a) = 0 if f is differentiable at a.

Since f is differentiable almost everywhere, h(a) = 0 almost everywhere. If $h(a) = \lim_{x \to a} \frac{\|f(x) - f(a)\|}{\|x - a\|} \neq 0$ for some a, then the measure of set $D = \{a : h(a) \neq 0\}$ is not zero, which is a contradiction. As a result, h(a) = 0 for all $a \in \mathbb{R}^n$.

By the definition of derivative, Df(a) exists and vanishes for all $a \in \mathbb{R}^n$ because if so,

$$\lim_{x \to a} \frac{\|f(x) - f(a) - Df(a)(x - a)\|}{\|x - a\|} = h(a) = 0$$

and such a linear map uniquely exists. In conclusion, by the mean value theorem, f is a constant function.