Category Archives: solution

Solution: 2023-03 Almost coverings of hypercubes

Determine the minimum number of hyperplanes in \(\mathbb{R}^n\) that do not contain the origin but they together cover all points in \(\{0,1\}^n\) except the origin.

The best solution was submitted by 이종서 (KAIST 전산학부 19학번, +4). Congratulations!

Here is the best solution of problem 2023-03.

Other solutions were submitted by 김찬우 (연세대학교 수학과 22학번, +3), 박기윤 (KAIST 새내기과정학부 23학번, +3), 박준성 (KAIST 수리과학과 석박통합과정 22학번, +3). There were two incorrect solutions submitted.

GD Star Rating
loading...

Solution: 2023-01 An integral sequence (again)

Suppose \( a_1, a_2, \dots, a_{2023} \) are real numbers such that
\[
a_1^3 + a_2^3 + \dots + a_n^3 = (a_1 + a_2 + \dots + a_n)^2
\]
for any \( n = 1, 2, \dots, 2023 \). Prove or disprove that \( a_n \) is an integer for any \( n = 1, 2, \dots, 2023 \).

The best solution was submitted by 기영인 (KAIST 수리과학과 22학번, +4). Congratulations!

Here is the best solution of problem 2023-01.

Other solutions were submitted by 고성훈 (KAIST 수리과학과 18학번, +3), 김찬우 (연세대학교 수학과 22학번, +3), 박기윤 (KAIST 새내기과정학부 23학번, +3), 임도현 (KAIST 수리과학과 22학번, +3), 신정여 (KAIST 수리과학과 21학번, +3), 문강연 (KAIST 수리과학과 22학번, +3), 이명규 (KAIST 전산학과 20학번, +3), 박현영 (KAIST 전기및전자공학부 석박사통합과정 22학번, +3), Myint Mo Zwe (KAIST 새내기과정학부 22학번, +3), 이재경 (KAIST 뇌인지과학과 22학번, +3), Matthew Seok, 김기수 (KAIST 수리과학과 18학번, +3), 박준성 (KAIST 수리과학과 석박통합과정 22학번, +3), Yusuf Bahadir Kilicarslan (KAIST 전산학부 19학번, +3), 이동하 (KAIST 새내기과정학부 23학번, +2). Late solutions are not graded.

GD Star Rating
loading...

Solution: 2022-24 Hey, who turned out the lights?

There are light bulbs \(\ell_1,\dots, \ell_n\) controlled by the switches \(s_1, \dots, s_n\). The \(i\)th switch flips the status of the \(i\)th light and possibly others as well. If \(s_i\) flips the status of \(\ell_j\), then \(s_j\) flips the status of \(\ell_i\). All lights are initially off. Prove that it is possible to turn all the lights on.

The best solution was submitted by 채지석 (KAIST 수리과학과 석박통합과정, +4). Congratulations!

Here is the best solution of problem 2022-24.

Other solutions were submitted by 김기수 (KAIST 수리과학과 18학번, +3), 박준성 (KAIST 수리과학과 석박통합과정, +3).

GD Star Rating
loading...

Solution: 2022-23 The number of eigenvalues of 8 by 8 matrices

Let \(A\) be an 8 by 8 integral unimodular matrix. Moreover, assume that for each \( x \in \mathbb{Z}^8 \), we have \(x^{\top} A x \) is even. What is the possible number of positive eigenvalues for \(A\)?

The best solution was submitted by Noitnetta Yobepyh (Snaejwen High School, +4). Congratulations!

Here is the best solution of problem 2022-23.

Other solutions were submitted by 김기수 (KAIST 수리과학과 18학번, +3), 여인영 (KAIST 물리학과 20학번, +3).

GD Star Rating
loading...

Solution: 2022-22 An integral sequence

Define a sequence \( a_n \) by \( a_1 = 1 \) and
\[
a_{n+1} = \frac{1}{n} \left( 1 + \sum_{k=1}^n a_k^2 \right)
\]
for any \( n \geq 1 \). Prove or disprove that \( a_n \) is an integer for all \( n \geq 1 \).

The best solution was submitted by 채지석 (KAIST 수리과학과 석박통합과정, +4). Congratulations!

Here is the best solution of problem 2022-22.

Other solutions were submitted by 기영인 (KAIST 22학번, +3), 김기수 (KAIST 수리과학과 18학번, +3), 박준성 (KAIST 수리과학과 석박통합과정, +3). An incomplete solution was submitted.

GD Star Rating
loading...

Solution: 2022-20 4 by 4 symmetric integral matrices

Let \(S\) be the set of all 4 by 4 integral positive-definite symmetric unimodular matrices. Define an equivalence relation \( \sim \) on \(S\) such that for any \( A,B \in S\), we have \(A \sim B\) if and only if \(PAP^\top = B\) for some integral unimodular matrix \(P\). Determine \(S ~/\sim \).

The best solution was submitted by 김기수 (KAIST 수리과학과 18학번, +4). Congratulations!

Here is the best solution of problem 2022-20.

GD Star Rating
loading...

Solution: 2022-21 A determinant of greatest common divisors

Let \(\varphi(x)\) be the Euler’s totient function. Let \(S = \{a_1,\dots, a_n\}\) be a set of positive integers such that for any \(a_i\), all of its positive divisors are also in \(S\). Let \(A\) be the matrix with entries \(A_{i,j} = gcd(a_i,a_j)\) being the greatest common divisors of \(a_i\) and \(a_j\). Prove that \(\det(A) = \prod_{i=1}^{n} \varphi(a_i)\).

The best solution was submitted by Noitnetta Yobepyh (Snaejwen High School, +4). Congratulations!

Here is the best solution of problem 2022-21.

Other solutions were submitted by 기영인 (KAIST 22학번, +3), 여인영 (KAIST 물리학과 20학번, +3), 채지석 (KAIST 수리과학과 석박통합과정, +3), 전해구 (KAIST 기계공학과 졸업생, +2), 최예준 (서울과기대 행정학과 21학번, +2).

GD Star Rating
loading...

Solution: 2022-19 Inequality for twice differentiable functions

Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function satisfying \( f(0) = 0 \) and \( 0 \leq f'(x) \leq 1 \). Prove that
\[ \left( \int_0^1 f(x) dx \right)^2 \geq \int_0^1 [f(x)]^3 dx. \]

The best solution was submitted by 기영인 (KAIST 22학번, +4). Congratulations!

Here is the best solution of problem 2022-19.

Other solutions were submitted by 여인영 (KAIST 물리학과 20학번, +3), Kawano Ren (Kaisei Senior High School, +3), 최예준 (서울과기대 행정학과 21학번, +3), 김준성 (KAIST 물리학과 박사과정, +3).

GD Star Rating
loading...

Solution: 2022-18 A sum of the number of factorizations

Let \(a(n)\) be the number of unordered factorizations of \(n\) into divisors larger than \(1\). Prove that \(\sum_{n=2}^{\infty} \frac{a(n)}{n^2} = 1\).

The best solution was submitted by 김기수 (KAIST 수리과학과 18학번, +4). Congratulations!

Here is the best solution of problem 2022-18.

Other solutions were submitted by 기영인 (KAIST 22학번, +3), Kawano Ren (Kaisei Senior High School, +3), Sakae Fujimoto (Osaka Prefectural Kitano High School, Freshmen, +3), 최백규 (KAIST 생명과학과 20학번, +3).

GD Star Rating
loading...

Solution: 2022-17 The smallest number of subsets

Let \(n, i\) be integers such that \(1 \leq i \leq n\). Each subset of \( \{ 1, 2, \ldots, n \} \) with \( i\) elements has the smallest number. We define \( \phi(n,i) \) to be the sum of these smallest numbers. Compute \[ \sum_{i=1}^n \phi(n,i).\]

The best solution was submitted by 김유준 (KAIST 수리과학과 20학번, +4). Congratulations!

Here is the best solution of problem 2022-17.

Other solutions were submitted by 김기수 (KAIST 수리과학과 18학번, +3), 기영인 (KAIST 22학번, +3), 이준환 (한국외국어대학교 통계학과 19학번, +3), 오준혁 (KAIST 수리과학과 20학번, +3), 신준범 (컬럼비아 대학교 20학번, +3), 이한스 (KAIST 수리과학과 20학번, +3), Kawano Ren (Kaisei Senior High School, +3), Sakae Fujimoto (Osaka Prefectural Kitano High School, Freshmen, +3).

GD Star Rating
loading...