Solution to POW2023-13

KAIST 수리과학과 20220669 조현준

September 6, 2023

Problem. Prove or disprove the existence of a function $f : [0,1] \rightarrow [0,1]$ with the following property: for any interval $(a,b) \subseteq [0,1]$ with a < b, f((a,b)) = [0,1].

Solution. Define an equivalence relation \sim on [0,1] to be $x \sim y$ if and only if $x - y \in \mathbb{Q}$. Consider the set of equivalent classes $[0,1]/\sim$. Notice that $[0,1]/\sim$ has the same cardinality with [0,1] since

 $\operatorname{card}([0,1]) = \operatorname{card}([0,1]/\sim) \operatorname{card}(\mathbb{Q}) = \max(\operatorname{card}([0,1]/\sim),\aleph_0) = \operatorname{card}([0,1]/\sim).$

Hence there is a bijection $\varphi : [0,1]/\sim \to [0,1]$. Now define a function $f : [0,1] \to [0,1]$ by $x \mapsto \varphi([x])$. It follows that for any $y \in [0,1]$, $f^{-1}(y) = [x]$ for some $x \in [0,1]$. Note that $[x] = \{x + r \in [0,1] : r \in \mathbb{Q}\}$ is dense in [0,1]. Thus any given interval $(a,b) \subseteq [0,1]$ contains a point $z \in [x]$, and hence f(z) = y. Therefore f((a,b)) = [0,1].