Prove that for every \( x_1, x_2,\ldots,x_n\in [0,1]\), there exist \(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n\in\{1/2,-1/2\}\) such that for all \(k=1,2,\ldots,n-1\), \[ \left\lvert \sum_{i=1}^k \varepsilon_i x_i-\sum_{i=k+1}^n \varepsilon_i x_i \right\rvert\le 1.\]
The best solution was submitted by Lee, Jongwon (이종원, 수리과학과 2014학번). Congratulations!
Here is his solution of problem 2016-1.
Alternative solutions were submitted by 노희광 (화학과 2014학번, +2), 안현수 (2016학번, +2), 이상민 (수리과학과 2014학번, +2), 홍혁표 (수리과학과 2013학번, +2). There were 10 incorrect submissions.
loading...