POW 2016-13

Lee, Jongwon

Define a sequence {s;, }nen as follows
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Then, by an easy induction, one can prove that
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for all n.
We wish to show that if &k positive integers a; < as < --- < ay, satisfy
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We shall use mathematical induction on k. If k = 1, it is trivial.
Now suppose the statement holds for all numbers less than k. Assume, for the sake of contradiction, that
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Then, the Abel summation formula gives
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by the assumptions and the induction hypotheses. Therefore, we have
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and the application of AM-GM inequality on the LHS gives
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But then, since (1/a1) +--- 4 (1/ax) can be represented with a fraction with ajas - - - aj as the denominator,
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which is a contradiction. Therefore, we have proved the desired statement.
The original problem is equivalent to
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Then, by the result of the above, we have
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and this maximum can actually by obtained by letting N; = s; for all 7. In this case, we can also check that V; = s;

divides N 4+ 1 = s7 - - - s, for all i. Therefore, the answer is s;--- s — 1 = 541 — 2.



