## POW 2016-13

Lee, Jongwon

Define a sequence $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ as follows

$$
\begin{gathered}
s_{1}=2 \\
s_{n+1}=1+\prod_{i=1}^{n} s_{i}
\end{gathered}
$$

Then, by an easy induction, one can prove that

$$
\sum_{i=1}^{n} \frac{1}{s_{i}}=1-\frac{1}{s_{1} s_{2} \cdots s_{n}}
$$

for all $n$.
We wish to show that if $k$ positive integers $a_{1} \leq a_{2} \leq \cdots \leq a_{k}$ satisfy

$$
\sum_{i=1}^{k} \frac{1}{a_{i}}<1
$$

then we have

$$
\sum_{i=1}^{k} \frac{1}{a_{i}} \leq \sum_{i=1}^{k} \frac{1}{s_{i}}
$$

We shall use mathematical induction on $k$. If $k=1$, it is trivial.
Now suppose the statement holds for all numbers less than $k$. Assume, for the sake of contradiction, that

$$
\sum_{i=1}^{k} \frac{1}{a_{i}}>\sum_{i=1}^{k} \frac{1}{s_{i}}
$$

Then, the Abel summation formula gives

$$
\sum_{i=1}^{k} a_{i}\left(\frac{1}{s_{i}}-\frac{1}{a_{i}}\right)=\sum_{i=1}^{k-1}\left(a_{i}-a_{i+1}\right)\left(\sum_{j=1}^{i}\left(\frac{1}{s_{j}}-\frac{1}{a_{j}}\right)\right)+a_{k}\left(\sum_{j=1}^{k}\left(\frac{1}{s_{j}}-\frac{1}{a_{j}}\right)\right) \leq 0
$$

by the assumptions and the induction hypotheses. Therefore, we have

$$
\sum_{i=1}^{k} \frac{a_{i}}{s_{i}} \leq k
$$

and the application of AM-GM inequality on the LHS gives

$$
a_{1} a_{2} \cdots a_{k} \leq s_{1} s_{2} \cdots s_{k}
$$

But then, since $\left(1 / a_{1}\right)+\cdots+\left(1 / a_{k}\right)$ can be represented with a fraction with $a_{1} a_{2} \cdots a_{k}$ as the denominator,

$$
\sum_{i=1}^{k} \frac{1}{a_{i}} \leq \frac{a_{1} a_{2} \cdots a_{k}-1}{a_{1} a_{2} \cdots a_{k}} \leq \frac{s_{1} s_{2} \cdots s_{k}-1}{s_{1} s_{2} \cdots s_{k}}=\sum_{i=1}^{k} \frac{1}{s_{i}}
$$

which is a contradiction. Therefore, we have proved the desired statement.
The original problem is equivalent to

$$
\frac{1}{N_{1}}+\cdots+\frac{1}{N_{k}}=1-\frac{1}{N+1}
$$

Then, by the result of the above, we have

$$
1-\frac{1}{N+1} \leq \sum_{i=1}^{k} \frac{1}{s_{i}}=1-\frac{1}{s_{1} s_{2} \cdots s_{k}} \quad \Longrightarrow \quad N \leq s_{1} s_{2} \cdots s_{k}-1
$$

and this maximum can actually by obtained by letting $N_{i}=s_{i}$ for all $i$. In this case, we can also check that $N_{i}=s_{i}$ divides $N+1=s_{1} \cdots s_{k}$ for all $i$. Therefore, the answer is $s_{1} \cdots s_{k}-1=s_{k+1}-2$.

