POW 2016-16

Lee, Jongwon

The problem is equivalent to finding a pair (a, b) such that

$$
a b \mid a^{2}+b^{2}+a+b+1
$$

in other words, we shall find a triple (a, b, k) of positive integers such that

$$
\begin{equation*}
k a b=a^{2}+b^{2}+a+b+1 \tag{1}
\end{equation*}
$$

Firstly, we shall prove that $k=5$. For a fixed k, let $\left(a_{0}, b_{0}\right)$ be a solution where $a_{0}+b_{0}$ is minimal. (If there are more than one, choose an arbitrary one.) Suppose that $a_{0} \leq b_{0}$. Consider the following quadratic equaion in t.

$$
t^{2}-\left(k a_{0}-1\right) t+a_{0}^{2}+a_{0}+1=0
$$

If t is a solution to the equation, then $\left(a_{0}, t, k\right)$ is a solution for (1). One solution is $t=b_{0}$, as we have assumed. By Vieta's formula, the other solution is

$$
t=b_{1}=k a_{0}-1-b_{0}=\frac{a_{0}^{2}+a_{0}+1}{b_{0}}
$$

The first expression shows that this number is an integer, and the second expression shows that this number is positive. Therefore, $\left(a_{0}, b_{1}, k\right)$ is also a valid solution for (1). By the minimality of $a_{0}+b_{0}$, we must have

$$
\frac{a_{0}^{2}+a_{0}+1}{b_{0}} \geq b_{0} \quad \Longrightarrow \quad a_{0} \leq b_{0}
$$

since the successive square to a_{0}^{2} is $a_{0}^{2}+2 a_{0}+1$. Therefore, $a_{0}=b_{0}$. But then,

$$
k=\frac{2 a_{0}^{2}+a_{0}+1}{a_{0}^{2}}
$$

and since a_{0} is coprime with the numerator, we must have $a_{0}=1$, so $k=5$.
Next we find all solutions to $a^{2}+b^{2}+a+b+1=5 a b$. If we have a solution (a, b) with $a \leq b$, following the above paragraph, we get another solution $\left(b^{\prime}, a\right)$ with $b^{\prime}=5 a-b-1$. We also have $b^{\prime}<b$ or otherwise following the same argument as above will lead to $a=b$ and thus $(a, b)=(1,1)$. Since $b^{\prime}+a<a+b$, we eventually reach the minimal solution which was $(1,1)$. But then, going
backward is also nothing but Vieta's formula, so all solutions can be obtained by

$$
(b, a) \rightarrow(a .5 a-b-1)
$$

starting from $(1,1)$. And of course, if (a, b) is a solution, (b, a) is also a solution.

