POW 2016-16

Lee, Jongwon

The problem is equivalent to finding a pair (a, b) such that

$$ab|a^2 + b^2 + a + b + 1$$

in other words, we shall find a triple (a, b, k) of positive integers such that

$$kab = a^2 + b^2 + a + b + 1 (1)$$

Firstly, we shall prove that k = 5. For a fixed k, let (a_0, b_0) be a solution where $a_0 + b_0$ is minimal. (If there are more than one, choose an arbitrary one.) Suppose that $a_0 \le b_0$. Consider the following quadratic equaion in t.

$$t^2 - (ka_0 - 1)t + a_0^2 + a_0 + 1 = 0$$

If t is a solution to the equation, then (a_0, t, k) is a solution for (1). One solution is $t = b_0$, as we have assumed. By Vieta's formula, the other solution is

$$t = b_1 = ka_0 - 1 - b_0 = \frac{a_0^2 + a_0 + 1}{b_0}$$

The first expression shows that this number is an integer, and the second expression shows that this number is positive. Therefore, (a_0, b_1, k) is also a valid solution for (1). By the minimality of $a_0 + b_0$, we must have

$$\frac{a_0^2 + a_0 + 1}{b_0} \ge b_0 \quad \Longrightarrow \quad a_0 \le b_0$$

since the successive square to a_0^2 is $a_0^2 + 2a_0 + 1$. Therefore, $a_0 = b_0$. But then,

$$k = \frac{2a_0^2 + a_0 + 1}{a_0^2}$$

and since a_0 is coprime with the numerator, we must have $a_0 = 1$, so k = 5.

Next we find all solutions to $a^2+b^2+a+b+1=5ab$. If we have a solution (a,b) with $a \le b$, following the above paragraph, we get another solution (b',a) with b'=5a-b-1. We also have b' < b or otherwise following the same argument as above will lead to a=b and thus (a,b)=(1,1). Since b'+a < a+b, we eventually reach the minimal solution which was (1,1). But then, going

backward is also nothing but Vieta's formula, so all solutions can be obtained by

$$(b,a) \rightarrow (a.5a-b-1)$$

starting from (1,1). And of course, if (a,b) is a solution, (b,a) is also a solution.