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Problem. Let k be a positive integer. Let an = 1 if n is not a multiple of k + 1, and

an = −k if n is a multiple of k + 1. Compute
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n
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Because 1/t→ 0 as t→∞, we have limt→∞ st(k+1) = ln(k + 1).

Finally, for positive integer i > k + 1, let M be an integer with (k + 1)M ≤ i <

(k + 1)(M + 1). Then we have

s(k+1)M ≤ si = s(k+1)M +
i∑

(k+1)M+1

1

t
≤ s(k+1)M + (k + 1) · 1
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.
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In other words, si is bounded by s(k+1)bi/(k+1)c and s(k+1)bi/(k+1)c+1/bi/(k+1)c. Because
both sequence converges to ln(k + 1), we have limi→∞ si = ln(k + 1).
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